

Lean Architecture for

Agile Software
Development

James Coplien
Gertrud Bjørnvig

A John Wiley and Sons, Ltd, Publication

Administrator
9780470665039.jpg

Lean Architecture for

Agile Software
Development

James Coplien
Gertrud Bjørnvig

A John Wiley and Sons, Ltd, Publication

This edition first published 2010
 2010 James Coplien and Gertrud Bjørnvig

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book. This publication is designed to provide accurate and authoritative
information in regard to the subject matter covered. It is sold on the understanding that the publisher
is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Quotes from The Clock of the Long Now: Time and Responsibility – The Ideas Behind the World’s Slowest
Computer are Copyright 2000 Stewart Brand. Reprinted by permission of Basic Books, a member of
the Perseus Books Group.

A catalogue record for this book is available from the British Library.

ISBN 978-0-470-68420-7

Typeset in 11/13 Palatino by Laserwords Private Limited, Chennai, India.
Printed in Great Britain by TJ International, Padstow, Cornwall

www.wiley.com

Dedication

To Trygve Mikkjel Heyerdahl Reenskaug, also a grandfather

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include
the following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director – Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Executive Commissioning Editor: Birgit Gruber
Assistant Editor: Colleen Goldring
Publishing Assistant: Ellie Scott
Project Editor: Juliet Booker
Content Editor: Nicole Burnett
Copy Editor: Richard Walshe

Marketing:
Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Batchelor

Composition Services:
Compositor: Laserwords Private Limited, Chennai, India
Proof Reader: Alex Grey
Indexer: Annette Musker

Contents

About the Authors xii
Preface xiii

1 Introduction 1
1.1 The Touchstones: Lean and Agile 1
1.2 Lean Architecture and Agile Feature Development 4
1.3 Agile Production 7

1.3.1 Agile Builds on Lean 7
1.3.2 The Scope of Agile Systems 8
1.3.3 Agile and DCI 9

1.4 The Book in a Very Small Nutshell 10
1.5 Lean and Agile: Contrasting and Complementary 11

1.5.1 The Lean Secret 14
1.6 Lost Practices 14

1.6.1 Architecture 15
1.6.2 Handling Dependencies between Requirements 15
1.6.3 Foundations for Usability 16
1.6.4 Documentation 16

Code Does Not Stand Alone 17
Capturing the ‘‘Why’’ 19

1.6.5 Common Sense, Thinking, and Caring 19
1.7 What this Book is Not About 21
1.8 Agile, Lean – Oh, Yeah, and Scrum and Methodologies and Such 22
1.9 History and Such 24

2 Agile Production in a Nutshell 27
2.1 Engage the Stakeholders 27
2.2 Define the Problem 29
2.3 Focusing on What the System Is: The Foundations of Form 30
2.4 Focusing on What the System Does: The System Lifeblood 32
2.5 Design and Code 33
2.6 Countdown: 3, 2, 1. . . 34

v

vi Contents

3 Stakeholder Engagement 35
3.1 The Value Stream 35

3.1.1 End Users and Other Stakeholders as Value Stream Anchors 36
3.1.2 Architecture in the Value Stream 37
3.1.3 The Lean Secret 38

3.2 The Key Stakeholders 41
3.2.1 End Users 43

Psyching Out the End Users 44
Don’t Forget Behavior 46
The End User Landscape 47

3.2.2 The Business 47
A Special Note for Managers 48

3.2.3 Customers 50
. . . As Contrasted with End Users 50
‘‘Customers’’ in the Value Stream 52

3.2.4 Domain Experts 52
No Ivory Tower Architects 53
Experts in Both Problem and Solution Domains 54

3.2.5 Developers and Testers 55
3.3 Process Elements of Stakeholder Engagement 57

3.3.1 Getting Started 58
3.3.2 Customer Engagement 60

3.4 The Network of Stakeholders: Trimming Wasted Time 61
3.4.1 Stovepipe Versus Swarm 61
3.4.2 The First Thing You Build 64
3.4.3 Keep the Team Together 65

3.5 No Quick Fixes, but Some Hope 66

4 Problem Definition 67
4.1 What’s Agile about Problem Definitions? 68
4.2 What’s Lean about Problem Definitions? 68
4.3 Good and Bad Problem Definitions 70
4.4 Problems and Solutions 72
4.5 The Process Around Problem Definitions 73

4.5.1 Value the Hunt Over the Prize 73
4.5.2 Problem Ownership 74
4.5.3 Creeping Featurism 75

4.6 Problem Definitions, Goals, Charters, Visions, and Objectives 76
4.7 Documentation? 77

5 What the System Is, Part 1: Lean Architecture 79
5.1 Some Surprises about Architecture 80

5.1.1 What’s Lean about This? 82
Deliberation and ‘‘Pull’’ 83
Failure-Proof Constraints or Poka-Yoke 83
The Lean Mantras of Conservation, Consistency, and Focus 84

5.1.2 What’s Agile about Architecture? 84
It’s All About Individuals and Interactions 84

Contents vii

Past Excesses 85
Dispelling a Couple of Agile Myths 86

5.2 The First Design Step: Partitioning 88
5.2.1 The First Partition: Domain Form Versus Behavioral Form 89
5.2.2 The Second Partitioning: Conway’s Law 90
5.2.3 The Real Complexity of Partitioning 93
5.2.4 Dimensions of Complexity 94
5.2.5 Domains: A Particularly Interesting Partitioning 94
5.2.6 Back to Dimensions of Complexity 96
5.2.7 Architecture and Culture 100
5.2.8 Wrap-Up on Conway’s Law 100

5.3 The Second Design Step: Selecting a Design Style 100
5.3.1 Contrasting Structuring with Partitioning 102
5.3.2 The Fundamentals of Style: Commonality and Variation 104
5.3.3 Starting with Tacit Commonality and Variation 105
5.3.4 Commonality, Variation, and Scope 108
5.3.5 Making Commonalities and Variations Explicit 111

Commonality Categories 112
Next Steps 114

5.3.6 The Most Common Style: Object Orientation 114
Just What is Object Orientation? 115

5.3.7 Other Styles within the Von Neumann World 117
5.3.8 Domain-Specific Languages and Application Generators 120

The State of the Art in DSLs 121
DSLs’ Place in Architecture 121

5.3.9 Codified Forms: Pattern Languages 122
5.3.10 Third-Party Software and Other Paradigms 124

5.4 Documentation? 127
5.4.1 The Domain Dictionary 128
5.4.2 Architecture Carryover 128

5.5 History and Such 129

6 What the System Is, Part 2: Coding It Up 131
6.1 The Third Step: The Rough Framing of the Code 131

6.1.1 Abstract Base Classes 133
6.1.2 Pre-Conditions, Post-Conditions, and Assertions 137

Static Cling 142
6.1.3 Algorithmic Scaling: The Other Side of Static Assertions 144
6.1.4 Form Versus Accessible Services 146
6.1.5 Scaffolding 147
6.1.6 Testing the Architecture 149

Usability Testing 149
Architecture Testing 149

6.2 Relationships in Architecture 153
6.2.1 Kinds of Relationship 153
6.2.2 Testing the Relationships 155

6.3 Not Your Old Professor’s OO 155
6.4 How much Architecture? 159

viii Contents

6.4.1 Balancing BUFD and YAGNI 159
6.4.2 One Size Does Not Fit All 160
6.4.3 When Are You Done? 160

6.5 Documentation? 162
6.6 History and Such 163

7 What the System Does: System Functionality 165
7.1 What the System Does 166

7.1.1 User Stories: A Beginning 166
7.1.2 Enabling Specifications and Use Cases 167
7.1.3 Helping Developers, Too 169
7.1.4 Your Mileage may Vary 170

7.2 Who is Going to Use Our Software? 171
7.2.1 User Profiles 171
7.2.2 Personas 171
7.2.3 User Profiles or Personas? 172
7.2.4 User Roles and Terminology 173

7.3 What do the Users Want to Use Our Software for? 173
7.3.1 Feature Lists 173
7.3.2 Dataflow Diagrams 174
7.3.3 Personas and Scenarios 174
7.3.4 Narratives 174
7.3.5 Behavior-Driven Development 175
7.3.6 Now that We’re Warmed Up. . . 175

Prototypes 176
Towards Foundations for Decisions 176
Known and Unknown Unknowns 176
Use Cases as a Decision Framework 177

7.4 Why Does the User Want to Use Our Software? 177
7.5 Consolidation of What the System Does 178

7.5.1 The Helicopter View 181
Habits: The Developer View and the User View 182
Trimming the Scope 185

7.5.2 Setting the Stage 186
7.5.3 Play the Sunny Day Scenario 187

Business Rules 191
7.5.4 Add the Interesting Stuff 193
7.5.5 Use Cases to Roles 200

Roles from the Use Case 201
Bridging the Gap between the Business and the Programmer 202

7.6 Recap 203
7.6.1 Support the User’s Workflow 203
7.6.2 Support Testing Close to Development 203
7.6.3 Support Efficient Decision-Making about Functionality 204
7.6.4 Support Emerging Requirements 204
7.6.5 Support Release Planning 204
7.6.6 Support Sufficient Input to the Architecture 205
7.6.7 Support the Team’s Understanding of What to Develop 205

Contents ix

7.7 ‘‘It Depends’’: When Use Cases are a Bad Fit 206
7.7.1 Classic OO: Atomic Event Architectures 206

7.8 Usability Testing 208
7.9 Documentation? 209
7.10 History and Such 211

8 Coding It Up: Basic Assembly 213
8.1 The Big Picture: Model-View-Controller-User 214

8.1.1 What is a Program? 214
8.1.2 What is an Agile Program? 215
8.1.3 MVC in More Detail 217
8.1.4 MVC-U: Not the End of the Story 217

A Short History of Computer Science 218
Atomic Event Architectures 219
DCI Architectures 220

8.2 The Form and Architecture of Atomic Event Systems 220
8.2.1 Domain Objects 221
8.2.2 Object Roles, Interfaces, and the Model 221

Example 223
8.2.3 Reflection: Use Cases, Atomic Event Architectures, and

Algorithms 224
8.2.4 A Special Case: One-to-Many Mapping of Object Roles to

Objects 225
8.3 Updating the Domain Logic: Method Elaboration, Factoring, and

Re-factoring 226
8.3.1 Creating New Classes and Filling in Existing Function

Placeholders 227
Example 228

8.3.2 Back to the Future: This is Just Good Old-Fashioned OO 229
8.3.3 Analysis and Design Tools 229
8.3.4 Factoring 231
8.3.5 A Caution about Re-Factoring 231

8.4 Documentation? 231
8.5 Why All These Artifacts? 232
8.6 History and Such 233

9 Coding it Up: The DCI Architecture 235
9.1 Sometimes, Smart Objects Just Aren’t Enough 235
9.2 DCI in a Nutshell 236
9.3 Overview of DCI 238

9.3.1 Parts of the User Mental Model We’ve Forgotten 239
9.3.2 Enter Methodful Object Roles 240
9.3.3 Tricks with Traits 242
9.3.4 Context Classes: One Per Use Case 243

9.4 DCI by Example 246
9.4.1 The Inputs to the Design 246
9.4.2 Use Cases to Algorithms 247
9.4.3 Methodless Object Roles: The Framework for Identifiers 250

x Contents

9.4.4 Partitioning the Algorithms Across Methodful Object Roles 253
Traits as a Building Block 253
In Smalltalk 253
In C++ 254
In Ruby 256
Coding it Up: C++ 257
Coding Up DCI in Ruby 259

9.4.5 The Context Framework 261
The Ruby Code 263
The C++ Code 265
Making Contexts Work 267
Habits: Nested Contexts in Methodful Object Roles 277

9.4.6 Variants and Tricks in DCI 283
Context Layering 283
Information Hiding 283
Selective Object Role Injection 284

9.5 Updating the Domain Logic 285
9.5.1 Contrasting DCI with the Atomic Event Style 286
9.5.2 Special Considerations for Domain Logic in DCI 287

9.6 Context Objects in the User Mental Model: Solution to an
Age-Old Problem 290

9.7 Why All These Artifacts? 294
Why not Use Classes Instead of ‘‘Methodful Object Roles’’? 295
Why not Put the Entire Algorithm Inside of the Class with

which it is Most Closely Coupled? 295
Then Why not Localize the Algorithm to a Class and Tie it to

Domain Objects as Needed? 296
Why not Put the Algorithm into a Procedure, and Combine

the Procedural Paradigm with the Object Paradigm
in a Single Program? 296

If I Collect Together the Algorithm Code for a Use Case in
One Class, Including the Code for All of its
Deviations, Doesn’t the Context Become Very
Large?’ 296

So, What do DCI and Lean Architecture Give Me? 297
And Remember. . . 297

9.8 Beyond C++: DCI in Other Languages 297
9.8.1 Scala 298
9.8.2 Python 299
9.8.3 C# 299
9.8.4 . . . and Even Java 299
9.8.5 The Account Example in Smalltalk 300

9.9 Documentation? 300
9.10 History and Such 301

9.10.1 DCI and Aspect-Oriented Programming 302
9.10.2 Other Approaches 302

Contents xi

10 Epilog 305

Appendix A Scala Implementation of the DCI Account Example 307

Appendix B Account Example in Python 311

Appendix C Account Example in C# 315

Appendix D Account Example in Ruby 321

Appendix E Qi4j 327

Appendix F Account Example in Squeak 331
F.1 Testing Perspective 333
F.2 Data Perspective 333

F.2.1 BB5Bank 333
F.2.2 BB5SavingsAccount 334
F.2.3 BB5CheckingAccount 334

F.3 Context Perspective 335
F.3.1 BB5MoneyTransferContext 335

F.4 Interaction (RoleTrait) Perspective 336
F.4.1 BB5MoneyTransferContextTransferMoneySource 336
F.4.2 BB5MoneyTransferContextMyContext 337
F.4.3 BB5MoneyTransferContextTransferMoneySink 337

F.5 Support Perspective (Infrastructure Classes) 337
F.5.1 BB1Context (common superclass for all contexts) 337
F.5.2 BB1RoleTrait (all RoleTraits are instances of this class) 339

Bibliography 341

Index 351

About the Authors
Gertrud Bjørnvig is an agile requirements expert with over 20 years’
experience in system development. She is a co-founder of the Danish Agile
User Group and is a partner in Scrum Training Institute.

Jim Coplien is a software industry pioneer in object-oriented design,
architecture patterns, and agile software development. He has authored
several books on software design and agile software development, and is
a partner in the Scrum Training Institute.

xii

Preface
What my grandfather did was create options. He worked hard to allow my father to

have a better education than he did, and in turn my father did the same.

Danny Hillis, quoted in The Clock of the Long Now, p. 152.

Harry Grinnell, who was co-author James Coplien’s grandfather, was a
life-long postal worker, but many of his life’s accomplishments can be
found in his avocations. His father was an alcoholic and his mother a
long-suffering religious woman. Grandpa Harry dropped out of school
after eighth year to take a job in a coal yard to put food on the table after
much of the family budget had gone to support his father’s habit. Harry
would go on to take up a job as a postal worker in 1925 at the age of 19, and
married Jim’s grandmother the next year. He faced the changes of the Great
Depression, of two world wars, and of great economic and social change.

You’re probably wondering why an Agile book starts with a story
about Grandpa Harry. It’s because his avocation as a master craftsman
in woodworking together with his common-sense approach to life offer
a fitting metaphor for the Agile and Lean styles of development. This is
a book about common sense. Of course, one person’s common sense is
another one’s revelation. If you are just learning about Agile and Lean, or
are familiar only with their pop versions, you may find new insights here.
Even if you know about Agile and Lean and are familiar with architecture,
you’re likely to learn from this book about how the two ideas can work
and play together.

As a postal employee, Grandpa Harry of course worked to assure that
the post office met its business objectives. He worked in the days when the
U.S. postal service was still nationalized; the competition of UPS and DHL
didn’t threaten postal business until late in his career. Therefore, the focus
of his work wasn’t as much on business results and profit as it was on
quality and individual customer service. Grandpa Harry was a rural mail
carrier who delivered to rural Wisconsin farmers, one mailbox at a time,
six days a week, come rain or shine. It wasn’t unusual for him to encounter

xiii

xiv Preface

a half-meter of snow, or snow drifts two meters high on his daily rounds.
Flooded creek valleys might isolate a farm, but that could be no obstacle.
He delivered mail in his rugged four-wheel drive Willys Jeep that he
bought as an Army surplus bargain after World War II. He outfitted it with
a snowplow in the winter, often plowing his way to customers’ mailboxes.

There are many good parallels between Grandpa Harry’s approach to
life and the ideals of Lean and Agile today. You need close contact with
your customer and have to earn the trust of your customer for Agile to
work. It’s not about us-and-them as typified by contracts and negotiation;
such was not part of Grandpa Harry’s job, and it’s not the job of a modern
software craftsperson in an Agile setting. The focus is on the end user. In
Grandpa Harry’s case, that end user was the child receiving a birthday
card from a relative thousands of miles away, or a soldier in Viet Nam
receiving a care package from home after it being entrusted to the United
States Postal Service for dispatching to its destination, or the flurry of
warm greetings around the Christmas holidays. The business entity in the
middle – in Grandpa Harry’s case, the U.S. Postal Service, and in our case,
our customers – tend to become transparent in the light of the end users’
interests. Customers care about the software CD as a means for profit; end
users have a stake in those products’ use cases to ensure some measure of
day-to-day support of their workflow.

To say this is neither to deny customers a place, nor to infer that our
employers’ interests should be sacrificed to those of our ultimate clientele. A
well-considered system keeps evolving so everybody wins. What Grandpa
Harry worked for was called the postal system: it was really a system,
characterized by systems thinking and a concern for the whole. So, yes,
the end user was paramount, but the system understood that a good post
office working environment and happy postal workers were an important
means to the end of user satisfaction. Postal workers were treated fairly in
work conditions and pay; exceptions were so unusual that they made the
news. In the same sense, the Agile environment is attentive to the needs
of the programmer, the analyst, the usability engineer, the manager, and
the funders. Tools such as architectural articulation, good requirements
management, and lean minimalism improve the quality of life for the
production side too. That is important because it supports the business
goals. It is imperative because, on a human scale, it is a scandal to sacrifice
development staff comfort to end user comfort.

Life in Grandpa Harry’s time was maybe simpler than it is today, but
many of the concepts of Lean and Agile are simple ideas that hearken back
to that era. Just because things are simple doesn’t mean they are simplistic.
The modern philosopher Thomas Moore asks us to ‘‘live simply, but
be complicated’’ (Moore 2001, p. 9). He notes that when Thoreau went
to Walden Pond, his thoughts became richer and more complicated the

Preface xv

simpler his environment became. To work at this level is to begin to
experience the kinds of generative processes we find in nature. Great
things can arise from the interactions of a few simple principles. The key,
of course, is to find those simple principles.

Grandpa Harry was not much one for convention. He was a doer, but
thinking backed his doing. In this book, we’ll certainly relate practices and
techniques from 15 years of positive experiences together with software
partners worldwide. But don’t take our word for it. This is as much a
book about thinking as about doing, much as the Agile tradition (and
the Agile Manifesto itself (Beck et al 2001)) is largely about doing, and
the Lean concepts from the Toyota tradition relate more to planning and
thinking (Liker 2004, ff. 237). These notions of thinking are among the lost
practices of Agile. Agile perhaps lost this focus on thinking and product in
its eagerness to shed the process-heavy focus of the methodology-polluted
age of the 1980s.

Grandpa Harry’s life is also a reminder that we should value timeless
domain knowledge. Extreme Programming (XP) started out in part by
consciously trying to do exactly the opposite of what conventional wis-
dom recommended, and in part by limiting itself to small-scale software
development. Over time, we have come full circle, and many of the old
practices are being restored, even in the halls and canon of Agiledom.
System testing is now ‘‘in,’’ as is up-front architecture – even in XP (Beck
1999, p. 113, 2005, p. 28). We’re starting to recover insights from past gen-
erations of system development that perhaps we didn’t even appreciate
at the time; if we did, we’ve forgotten. Many of these ‘‘old’’ ideas such as
architecture and planning, and even some of the newer ideas such as use
cases that have fallen into disfavor, deserve a second look. We find many
of these ideas re-surfacing under different names anyhow in today’s Agile
world: architecture reappears as metaphor, and use cases reappear as the
collections of user story cards and supplementary constraint and testing
cards that go with them (Cohn 2004), or as the requirement structuring we
find in story maps (Patton 2009).

The domain knowledge in this book goes beyond standing on our tiptoes
to standing on the shoulders of giants. We have let our minds be sharpened
by people who have earned broad respect in the industry – and double that
amount of respect from us – from Larry Constantine and David Parnas to
Jeff Sutherland and Alistair Cockburn. We also draw on our own experience
in software development going back to our first hobby programs in the
1960s, and our software careers going back to the early 1970s (Coplien) and
1980s (Bjørnvig). We draw lightly on Coplien’s more recent book together
with Neil Harrison, Organizational Patterns of Agile Software Development
(Coplien and Harrison 2004), which stands on ten years of careful research
into software development organizations worldwide. Its findings stand as

xvi Preface

the foundations of the Agile discipline, having been the inspiration for
stand-up meetings in the popular Scrum product management framework
(Sutherland 2003, 2007), and of much of the structural component of XP
(Fraser et al 2003). Whereas the previous book focused on the organizational
with an eye to the technical, this one focuses on the technical with an eye
to the organizational. Nerds: enjoy!

As long as we have you thinking, we want you thinking about issues
of lasting significance to your work, your enterprise, and the world we
as software craftsmen and craftswomen serve. If we offer a technique, it’s
because we think it’s important enough that you’d notice the difference
in the outcome of projects that use it and those that don’t. We won’t
recommend exactly what incantation of words you should use in a user
story. We won’t bore you with whether to draw class diagrams bottom-up
or top-down nor, in fact, whether to draw diagrams at all. We won’t try
to indoctrinate you with programming language arguments – since the
choice of programming language has rarely been found to matter in any
broadly significant way. As we know from Agile and Lean thinking, people
and values matter most, and bring us to ideals such as caring. The byline
on the book’s cover, Software as if people mattered, is a free re-translation of
the title of Larry Constantine’s keynote that Coplien invited him to give at
OOPSLA in 1996. People are ultimately the focus of all software, and it’s
time that we show enough evidence to convict us of honoring that focus.
We will dare use the phrase ‘‘common sense,’’ as uncommon as its practice
is. We try to emphasize things that matter – concrete things, nonetheless.

There is a subtext to this book for which Grandpa Harry is a symbol:
valuing timelessness. In our software journey the past 40 years we have
noticed an ever-deepening erosion of concern for the long game in software.
This book is about returning to the long game. However, this may be a
sobering concern as much for society in general as it is for our relatively
myopic view of software. To help drive home this perspective we’ve taken
inspiration from the extended broadside The Clock of the Long Now (Brand
1999), which is inspired in no small part by software greats including
Mitchell Kapoor and Daniel Hillis. The manuscript is sprinkled with small
outtakes from the book, such as this one:

What we can do is convert the design of software from brittle to
resilient, from heedlessly headlong to responsible, and from time
corrupted to time embracing. (Brand 1999, p. 86)

These outtakes are short departures from the book’s (hopefully practical)
focus on architecture and design that raise the principles to levels of social
relevance. They are brief interludes to inspire discussions around dinner
and reflection during a walk in the woods. We offer them neither to

Preface xvii

preach at you nor to frighten you, but to help contextualize the humble
software-focused theses of this book in a bigger picture.

We’ve worked with quite a few great men and women to develop and
refine the ideas in this book. It has been an honor sparring with Trygve
Reenskaug about his DCI (Data, Context and Interaction) architecture,
learning much from him and occasionally scoring an insight. We have
also traded many notes with Richard Öberg, whose Qi4j ideas echo many
aspects of DCI, and it has been fun as we’ve built on each other’s work.

We’ve also built on the work of many people who started coding up DCI
examples after a presentation at JaOO in 2008: Serge Beaumont at Xebia
(Python), Ceasario Ramos (who thoroughly explored the Java space), Jesper
Rugård Jensen (ditto), Lars Vonk (in Groovy), David Byers (also in Python),
Anders Narwath (JavaScript), Unmesh Joshi (AspectJ), Bill Venners (Scala,
of course), and Christian Horsdal Gammelgaard of Mjølner (C#/.Net).
Many examples in this book build on Steen Lehmann’s exploration of DCI
in Ruby. We, and the entire computing community, should be ever grateful
to all of these folks.

We appreciate all the good folks who’ve devoted some of their hours
to reading and reflecting on our early manuscripts. Trygve, again, offered
many useful suggestions and his ideas on the manuscript itself have helped
us clarify and sharpen the exposition of DCI. It goes without saying that
the many hours we spent with Trygve discussing DCI, even apart from
any focus on this book, were memorable times. Trygve stands almost as a
silent co-author of this book, and we are ever indebted to him and to his
wife Bjørg for many hours of stimulating discussion. Thanks, Trygve!

We are also indebted to Rebecca Wirfs-Brock for good discussions about
use cases, for clarifying the historical context behind them, for confirming
many of our hunches, and for straightening out others.

We owe special thanks to Lars Fogtmann Sønderskov for a detailed
review of an early version of the manuscript. His considerable experience
in Lean challenged our own thinking and pushed us to review and re-think
some topics in the book. Brett Schuchert, who was a treasured reviewer
for Advanced C++ 20 years ago, again treated us to a tough scouring of
the manuscript. Thanks, Brett! Thanks also to our other official reviewer,
the renowned software architect Philippe Kruchten, who helped us
make some valuable connections to other broadly related work. Atzmon
Hen-tov not only found many small mistakes but also helped us frame the
big picture, and his comments clearly brought years of hard-won insights
from his long journey as a software architect. Thanks to the many other
reviewers who scoured the manuscript and helped us to polish it: Roy Ben
Hayun, Dennis L DeBruler, Dave Byers, Viktor Grgic, Neil Harrison, Bojan
Jovičić, Urvashi Kaul, Steen Lehmann, Dennis Mancl, Simon Michael,
Sandra Raffle Carrico, Jeppe Kilberg Møller, Rune Funch Søltoft, Mikko

xviii Preface

Suonio, and Lena Nikolaev. Many ideas came up in discussions at the
Agile Architecture course in Käpylä, Finland, in October 2008: Aleksi
Ahtiainen, Aki Kolehmainen, Heimo Laukkanen, Mika Leivo, Ari Tikka,
and Tomi Tuominen all contributed mightily. Thanks, too, to James
Noble, Peter Bunus, and John McGregor for their evaluations of the book
proposal in its formative days and for their encouragement and feedback.

A big thanks to Paul Mitchell Design, Ltd., for a great job working with
us on the book cover design. Claire Spinks took on the unenviable job
of copy editing and helped us polish up the manuscript. And, of course,
many thanks to Birgit Gruber, our editor, and to Ellie Scott, who oversaw
much of the editorial hand-holding during the book’s formative years.

Thanks to Magnus Palmgård of Tobo, Sweden for providing a lovely
venue for several months of thoughtful reflection and writing.

We appreciate the pioneers who have gone before us and who have
influenced the way we look at the world and how we keep learning about it.
Phillip Fuhrer lent useful insights on problem definition. We had thoughtful
E-mail conversations with Larry Constantine, and it was a pleasure to
again interact with him and gain insight on coupling and cohesion from
a historical context. Some of his timeless ideas on coupling, cohesion,
and even Conway’s Law (which he named) are coming back into vogue.
Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, Andrew Black,
Roel Wuyts and others laid the foundations for traits. Trygve Reenskaug,
Jeff Sutherland, Alistair Cockburn, Jerry Weinberg, and hundreds of others
have all led us here. So, of course, has Grandpa Harry.

C H A P T E R

1

Introduction
We are changing the Earth more rapidly than we are understanding it.

– Peter Vitousek et al. quoted in The Clock of the Long Now, p. 9.

A proper book isn’t just a collection of facts or even of practices: it reflects a
cause and a mission. In the preface we couched this book in a broad context
of social responsibility. Just as the motivation section (goal in context,
summary, or whatever else you call it) in a use case helps the analyst
understand requirements scenarios, this chapter might shed light on the
ones that follow. It describes our philosophy behind the book and the way
we present the ideas to you. If you’re tempted to jump to a whirlwind
tour of the book’s contents, you might proceed to Chapter 2. However,
philosophy is as important as the techniques themselves in a Lean and
Agile world. We suggest you read through the introduction at least once,
and tuck it away in your memory as background material for the other
chapters that will support your day-to-day work.

1.1 The Touchstones: Lean and Agile

Lean and Agile are among the most endearing buzzwords in software
today, capturing the imagination of management and nerds alike. Popular
management books of the 1990s (Womack et al 1991) coined the term Lean
for the management culture popularized by the Japanese auto industry,
and which can be traced back to Toyota where it is called The Toyota Way.
In vernacular English, minimal is an obvious synonym for Lean, but to link
lean to minimalism alone is misleading.

1

2 Chapter 1

Lean’s primary focus is the enterprise value stream. Lean grabs the
consumer world and pulls it through the value stream to the beginnings of
development, so that every subsequent activity adds value. Waste in pro-
duction reduces value; constant improvement increases value. In Western
cultures managers often interpret Lean in terms of its production practices:
just-in-time, end-to-end continuous flow, and reduction of inventory. But
its real heart is The Lean Secret: an ‘‘all hands on deck’’ mentality that
permeates every employee, every manager, every supplier, and every part-
ner. Whereas the Agile manifesto emphasizes customers, Lean emphasizes
stakeholders – with everybody in sight being a stakeholder.

Lean architecture and Agile feature development aren’t about working
harder. They’re not about working ‘‘smarter’’ in the academic or traditional
computer science senses of the word ‘‘smart.’’ They are much more about
focus and discipline, supported by common-sense arguments that require
no university degree or formal training. This focus and discipline shines
through in the roots of Lean management and in many of the Agile values.

We can bring that management and development style to software
development. In this book, we bring it to software architecture in particular.
Architecture is the big-picture view of the system, keeping in mind that
the best big pictures need not be grainy. We don’t feel a need to nail down
a scientific definition of the term; there are too many credible definitions to
pick just one. For what it’s worth, the IEEE defines it this way:

. . . The fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment and
the principles guiding its design and evolution (IEEE1471 2007)

Grady Booch gives us this simple definition:

Architecture represents the significant design decisions that shape a
system, where significant is measured by cost of change. (Booch 2006)

That isn’t too bad. But more generally, we define architecture as the form of
a system, where the word form has a special meaning that we’ll explore a bit
later. For now, think of it as relating to the first three components of the IEEE
definition. No matter how we care to define it, software architecture should
support the enterprise value stream even to the extent that the source code
itself should reflect the end user mental model of the world. We will deliver
code just in time instead of stockpiling software library warehouses ahead
of time. We strive towards the practice of continuous flow.

Each of these practices is a keystone of Lean. But at the heart of Lean
architecture is the team: the ‘‘all hands on deck’’ mentality that everyone is
in some small part an architect, and that everyone has a crucial role to play

Introduction 3

in good project beginnings. We want the domain experts (sometimes called
the architects) present as the architecture takes shape, of course. However,
the customer, the developer, the testers, and the managers should also be
fully present at those beginnings.

This may sound wasteful and may create a picture of chaotic beginnings.
However, one of the great paradoxes of Lean is that such intensity at the
beginning of a project, with heavy iteration and rework in design, actually
reduces overall life cycle cost and improves product quality. Apply those
principles to software, and you have a lightweight up-front architecture.
Lightweight means that we reduce the waste incurred by rework (from inad-
equate planning), unused artifacts (such as comprehensive documentation
and speculative code), and wait states (as can be caused by the review
life cycle of architecture and design documents, or by handoffs between
functional teams).

Software folks form a tribe of sorts (Nani 2006) that holds many beliefs,
among them that architecture is hard. The perception comes in part from
architecture’s need for diverse talents working together, compounded by
the apparently paradoxical need to find the basic form of something that
is essentially complex. Even more important, people confuse ‘‘takes a
long time’’ with ‘‘hard.’’ That belief in turn derives from our belief in
specialization, which becomes the source of handoffs: the source of the
delays that accumulate into long intervals that makes architecture look
hard. We tend to gauge our individual uncertainty and limited experience
in assessing the difficulty of design, and we come up short, feeling awkward
and small rather than collaborative and powerful. Architecture requires a
finesse and balance that dodges most silver bullets. Much of that finesse
comes with the Lean Secret: the takes-a-long-time part of hard becomes
softer when you unite specialists together in one room: everybody, all
together, from early on. We choose to view that as hard because, well, that’s
how it’s always been, and perhaps because we believe in individuals first
and interactions second.

Neither Lean nor Agile alone make architecture look easy. However,
architecture needn’t be intrinsically hard. Lean and Agile together illu-
minate architecture’s value. Lean brings careful up-front planning and
‘‘everybody, all together, from early on’’ to the table, and Agile teaches or
reminds us about feedback. Together they illuminate architecture’s value:
Lean, for how architecture can reduce waste, inconsistency, and irregular
development; and Agile, for how end user engagement and feedback can
drive down long-term cost. Putting up a new barn is hard, too. As Grandpa
Harry used to say, many hands make light work, and a 19th-century Amer-
ican farm neighborhood could raise a new barn in a couple of days. So
can a cross-functional team greatly compress the time, and therefore the
apparent difficulty, of creating a solid software architecture.

4 Chapter 1

Another key Lean principle is to focus on long-term results (Liker 2004,
pp. 71–84). Lean architecture is about doing what’s important now that
will keep you in the game for the long term. It is nonetheless important to
contrast the Lean approach with traditional approaches such as ‘‘investing
for the future.’’ Traditional software architecture reflects an investment
model. It capitalizes on heavyweight artifacts in software inventory and
directs cash flow into activities that are difficult to place in the customer
value stream. An industry survey of projects with ostensibly high failure
rates (as noted in Glass (2006), which posits that the results of the Standish
survey may be rooted in characteristically dysfunctional projects) found
that 70% of the software they build is never used (Standish Group 1995).

Lean architecture carefully slices the design space to deliver exactly the
artifacts that can support downstream development in the long term. It
avoids wasteful coding that can better be written just after demand for
it appears and just before it generates revenues in the market. From the
programmer’s perspective, it provides a way to capture crucial design
concepts and decisions that must be remembered throughout feature
production. These decisions are captured in code that is delivered as part
of the product, not as extraneous baggage that becomes irrelevant over time.

With such Lean foundations in place, a project can better support Agile
principles and aspire to Agile ideals. If you have all hands on deck, you
depend more on people and interactions than on processes and tools. If you
have a value stream that drives you without too many intervening tools
and processes, you have customer engagement. If we reflect the end user
mental model in the code, we are more likely to have working software.
And if the code captures the form of the domain in an uncluttered way, we
can confidently make the changes that make the code serve end user wants
and needs.

This book is about a Lean approach to domain architecture that lays
a foundation for Agile software change. The planning values of Lean do
not conflict with the inspect-and-adapt principles of Agile: allocated to
the proper development activities, each supports the other in the broader
framework of development. We’ll revisit that contrast in a little while
(Section 1.4), but first, let’s investigate each of Lean Architecture and Agile
Production in more detail.

1.2 Lean Architecture and Agile Feature
Development

The Agile Manifesto (Beck et al 2001) defines the principles that underlie
the Agile vision, and the Toyota Way (Liker 2004) defines the Lean

Introduction 5

vision. This book offers a vision of architecture in an organization that
embraces these two sets of ideals. The Lean perspective focuses on how we
develop the overall system form by drawing on experience and domain
knowledge. The Agile perspective focuses on how that informed form
helps us respond to change, and sometimes even to plan for it. How does
that vision differ from the classic, heavyweight architectural practices that
dominated object-oriented development in the 1980s? We summarize the
differences in Table 1-1.

Table 1-1 What is Lean Architecture?

Lean Architecture Classic Software Architecture

Defers engineering Includes engineering

Gives the craftsman ‘‘wiggle room’’ for
change

Tries to limit large changes as
‘‘dangerous’’ (fear change?)

Defers implementation (delivers
lightweight APIs and descriptions of
relationships)

Includes much implementation
(platforms, libraries) or none at all
(documentation only)

Lightweight documentation Documentation-focused, to describe the
implementation or compensate for its
absence

People Tools and notations

Collective planning and cooperation Specialized planning and control

End user mental model Technical coupling and cohesion

■ Classic software architecture tends to embrace engineering concerns
too strongly and too early. Agile architecture is about form, and while
a system must obey the same laws that apply to engineering when
dealing with form, we let form follow proven experience instead of
being driven by supposedly scientific engineering rationales. Those
will come soon enough.

■ This in turn implies that the everyday developers should use their
experience to tailor the system form as new requirements emerge and
as they grow in understanding. Neither Agile nor Lean gives coders
wholesale license to ravage the system form, but both honor the value
of adaptation. Classic architecture tends to be fearful of large changes,
so it focuses on incremental changes only to existing artifacts: adding
a new derived class is not a transformation of form (architecture), but
of structure (implementation). In our combined Lean/Agile
approach, we reduce risk by capturing domain architecture, or basic

6 Chapter 1

system form, in a low-overhead way. Furthermore, the architecture
encourages new forms in those parts of the system that are likely to
change the most. Because these forms aren’t pre-filled with premature
structure, they provide less impedance to change than traditional
approaches. This is another argument for a true architecture of the
forms of domain knowledge and function rather than an architecture
based on structure.

■ Classic software architecture sometimes rushes into implementation
to force code reuse to happen or standards to prevail. Lean
architecture also adopts the perspective that standards are valuable,
but again: at the level of form, protocols, and APIs, rather than their
implementation.

■ Some classic approaches to software architecture too often depend
on, or at least produce, volumes of documentation at high cost. The
documentation either describes ‘‘reusable’’ platforms in excruciating
detail or compensates for the lack of a clarifying implementation.
Architects often throw such documentation over the wall into
developers’ cubicles, where it less often used than not. Agile
emphasizes communication, and sometimes written documentation
is the right medium. However, we will strive to document only the
stuff that really matters, and we’ll communicate many decisions in
code. That kills two birds with one stone. The rest of the time, it’s
about getting everybody involved face-to-face.

■ Classic architectures too often focus on methods, rules, tools,
formalisms, and notations. Use them if you must. But we won’t talk
much about those in this book. Instead, we’ll talk about valuing
individuals and their domain expertise, and valuing the end-user
experience and their mental models that unfold during analysis.

■ Both Lean and classic architecture focus on long-term results, but they
differ in how planning is valued. Even worse than heavy planning is
a prescription to follow the plan. Lean focuses on what’s important
now, whenever ‘‘now’’ is – whether that is hitting the target for next
week’s delivery or doing long-term planning. It isn’t only to eliminate
waste by avoiding what is never important (dead code and unread
documents), but has a subtler timeliness. Architecture isn’t an excuse
to defer work; on the contrary, it should be a motivation to embrace
implementation as soon as decisions are made. We make decisions
and produce artifacts at the most responsible times.

As we describe it in this book, Lean architecture provides a firm foun-
dation for the ongoing business of a software enterprise: providing timely
features to end users.

Introduction 7

1.3 Agile Production

If your design is lean, it produces an architecture that can help you be more
Agile. By Agile, we mean the values held up by the Agile Manifesto:

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more. (Beck et al 2001)

1.3.1 Agile Builds on Lean
Just as with the ‘‘all hands on deck’’ approach of Lean, Agile development
also embraces close person-to-person contact, particularly with the clients.
Unlike the tendencies of Lean, or much of today’s software architecture, our
vision of Agile production plans for change. Lean architecture provides a
context, a vocabulary, and productive constraints that make change easier
and perhaps a little bit more failure-proof. It makes explicit a value stream
along which stakeholder changes can propagate without being lost. We
can respond to market whims. And we love market whims – because that’s
how we provide satisfaction and keep the enterprise profitable.

Agile production not only builds on a Lean domain architecture, but
it stays Lean with its focus on code – working software. The code is the
design. No, really. The code is the best way to capture the end user
mental models in a form suitable to the shaping and problem solving that
occur during design. We of course also need other design representations
that close the feedback loop to the end user and other stakeholders for
whom code is an unsuitable medium, so lightweight documentation may
be in order – we’ll introduce that topic in Section 1.6.4. We take this
concept beyond platitudes, always striving to capture the end-user model
of program execution in the code.

Classic architectures focus on what doesn’t change, believing that foun-
dations based on domain knowledge reduce the cost of change. Agile
understands that nothing lasts forever, and it instead focuses explicitly
on what is likely to change. Here we balance the two approaches, giving
neither one the upper hand.

8 Chapter 1

Lean also builds on concepts that most people hold to be fundamental
to Agile. The Lean notion of value streams starting with end users recalls
individual and interactions as well as customer focus. The Lean notion of
reduced waste goes hand-in-hand with Agile’s view of documentation. It
is not about Lean versus Agile and neither about building Lean on top of
Agile nor Agile on top of Lean. Each one is a valuable perspective into the
kind of systems thinking necessary to repeatedly deliver timely products
with quality.

1.3.2 The Scope of Agile Systems

Electronically accelerated market economies have swept the world for good
reasons. They are grass-roots driven (by customers and entrepreneurs), swiftly

adaptive, and highly rewarding.

The Clock of the Long Now, p. 25.

Software architects who were raised in the practices and experience of
software architecture of the 1970s and 1980s will find much comfort in the
Lean parts of this book, but may find themselves in new territory as they
move into the concepts of Agile production. Architecture has long focused
on stability while Agile focuses on change. Agile folks can learn from the
experience of previous generations of software architecture in how they
plan for change. As we present a new generation of architectural ideas in
this book, we respond to change more directly, teasing out the form even
of those parts of software we usually hold to be dynamic. We’ll employ
use cases to distill the stable backbones of system behavior from dozens or
hundreds of variations. We go further to tease out the common rhythms
of system behavior into the roles that are the basic concepts we use to
describe it and the connections between them.

Grandpa Harry used to say that necessity is the mother of invention,
so need and user expectation are perhaps the mother and father of change.
People expect software to be able to change at lightening speed in modern
markets. On the web, in financial services and trading, and in many other
market segments, the time constants are on the order of hours or days.
The users themselves interact with the software on time scales driven by
interactive menus and screens rather than by daily batch runs. Instead of
being able to stack the program input on punched cards ahead of time,
decisions about the next text input or the next menu selection are made
seconds or even milliseconds before the program must respond to them.

Agile software development is well suited to such environments because
of its accommodation for change. Agile is less well suited to environments

Introduction 9

where feedback is either of little value (such as the development of a
protocol based on a fully formal specification and development process)
or is difficult to get (such as from software that is so far embedded in other
systems that it has no obvious interaction with individuals). Libraries and
platforms often fall into this category: how do you create short feedback
loops that can steer their design? Sometimes a system is so constrained by
its environment that prospects for change are small, and Agile approaches
may not help much.

Lean likewise shines in some areas better than others. It’s overkill
for simple products. While Lean can deal with complicated products, it
needs innovation from Agile to deal with complex products where we
take complicated and complex in Snowden’s (Snowden 2009) terms. Com-
plicated systems can rely on fact-based management and can handle
known unknowns, but only with expert diagnosis. Complex systems have
unknown unknowns, and there is no predictable path from the current
state to a better state (though such paths can be rationalized in retrospect).
There are no right answers, but patterns emerge over time. Most of the
organizational patterns cited in this book relate to complex problems. Even
in dealing with complex systems, Agile can draw on Lean techniques to
establish the boundary conditions necessary for progress.

The good news is that most systems have both a Lean component and
an Agile component. For example, embedded or deeply layered system
software can benefit from domain experience and the kind of thorough
analysis characteristic of Lean, while other software components that
interact with people can benefit from Agile.

Below the realm of Lean and Agile lie simple systems, which are largely
knowable and predictable, so we can succeed even if our efforts fall short
of both Lean and Agile. On the other end are chaotic system problems such
as dealing with a mass system outage. There, even patterns are difficult to
find. It is important to act quickly and to just find something that works
rather than seeking the right answer. Chaotic systems are outside the scope
of our work here.

1.3.3 Agile and DCI
If we can directly capture key end-user mental models in the code, it
radically increases the chances the code will work. The fulfillment of this
dream has long eluded the object-oriented programming community, but
the recent work on the Data, Context and Interaction (DCI) architecture,
featured in Chapter 9, brings this dream much closer to reality than we
have ever realized. And by ‘‘work’’ we don’t mean that it passes tests or

10 Chapter 1

that the green bar comes up: we mean that it does what the user expects
it to do.1 The key is the architectural link between the end user mental
model and the code itself.

1.4 The Book in a Very Small Nutshell

We’ll provide a bit meatier overview in Chapter 2, but here is the one-page
(and a bit more) summary of the technical goodies in the book, for you
nerds reading the introduction:

■ System architecture should reflect the end users’ mental model of
their world. This model has two parts. The first part relates to the
user’s thought process when viewing the screen, and to what the
system is: its form. The second part relates to what end users
do – interacting with the system – and how the system should
respond to user input. This is the system functionality. We work with
users to elicit and develop these models and to capture them in code
as early as possible. Coupling and cohesion (Stevens, Myers, and
Constantine 1974) follow from these as a secondary effect.

■ To explore both form and function requires up-front engagement of
all stakeholders, and early exploration of their insights. Deferring
interactions with stakeholders, or deferring decisions beyond the
responsible moment slows progress, raises cost, and increases
frustration. A team acts like a team from the start.

■ Programming languages help us to concretely express form in the
code. For example, abstract base classes can concretely express
domain models. Development teams can build such models in about
one Scrum Sprint: a couple of weeks to a month. Design-by-contract,
used well, gets us closer to running code even faster. Going beyond
this expression of form with too much structure (such as class
implementation) is not Lean, slows things down, and leads to rework.

■ We can express complex system functionality in use cases. Lightweight,
incrementally constructed use cases help the project to quickly
capture and iterate models of interaction between the end user (actor)
and the system, and to structure the relationships between scenarios.

1 What users really expect has been destroyed by the legacy of the past 40 years of software
deployment. It’s really hard to find out what they actually need, and what they want too often
reflects short-term end-user thinking. Our goal is to avoid the rule of least surprise: we don’t
want end users to feel unproductive, or to feel that the system implementers didn’t understand
their needs, or to feel that system implementers feel that they are stupid. Much of this discussion
is beyond the scope of this book, though we will touch on it from time to time.

Introduction 11

By making requirement dependencies explicit, use cases avoid depen-
dency management and communication problems that are common
in complex Agile projects. Simpler documents like User Narratives
are still good enough to capture simple functional requirements.

■ We can translate use case scenarios into algorithms, just in time, as
new scenarios enter the business process. We encode these algorithms
directly as role methods. We will introduce roles (implemented as role
classes or traits) as a new formalism that captures the behavioral
essence of a system in the same way that classes capture the essence
of domain structure. Algorithms that come from use cases are more or
less directly readable from the role methods. Their form follows
function. This has profound implications for code comprehension,
testability, and formal analysis. At the same time, we create or update
classes in the domain model to support the new functionality. These
classes stay fairly dumb, with the end-user scenario information
separated into the role classes.

■ We use a recent adaptation of traits to glue together role classes with
the domain classes. When a use case scenario is enacted at run time, the
system maps the use case actors into the objects that will support the
scenario (through the appropriate role interface), and the scenario runs.

Got your attention? It gets even better. Read on.

1.5 Lean and Agile: Contrasting and
Complementary

You should now have a basic idea of where we’re heading. Let’s more
carefully consider Agile and Lean, and their relationships to each other
and to the topic of software design.

One unsung strength of Agile is that it is more focused on the ongoing
sustenance of a project than just its beginnings. The waterfall stereotype is
patterned around greenfield development. It doesn’t easily accommodate
the constraints of any embedded base to which the new software must fit,
nor does it explicitly provide for future changes in requirements, nor does
it project what happens after the first delivery. But Agile sometimes doesn’t
focus enough on the beginnings, on the long deliberation that supports
long-term profitability, or on enabling standards. Both Lean and Agile are
eager to remove defects as they arise. Too many stereotypes of Lean and
Agile ignore both the synergies and potential conflicts between Lean and
Agile. Let’s explore this overlap a bit.

12 Chapter 1

Architects use notations to capture their vision of an ideal system at
the beginning of the life cycle, but these documents and visions quickly
become out-of-date and become increasingly irrelevant over time. If we
constantly refresh the architecture in cyclic development, and if we express
the architecture in living code, then we’ll be working with an Agile
spirit. Yes, we’ll talk about architectural beginnings, but the right way
to view software development is that everything after the first successful
compilation is maintenance.

Lean is often cited as a foundation of Agile, or as a cousin of Agile, or
today as a foundation of some Agile technique and tomorrow not. There
is much confusion and curiosity about such questions in software today.
Scrum inventor Jeff Sutherland refers to Lean and Scrum as separate and
complementary developments that both arose from observations about
complex adaptive systems (Sutherland 2008). Indeed, in some places Lean
principles and Agile principles tug in different directions. The Toyota Way
is based explicitly on standardization (Liker 2004, chapter 12); Scrum says
always to inspect and adapt. The Toyota Way is based on long deliberation
and thought, with rapid deployment only after a decision has been reached
(Liker 2004, chapter 19); most Agile practice is based on rapid decisions
(Table 1-2).

Table 1-2 Contrast between Lean and Agile.

Lean Agile

Thinking and doing Doing

Inspect-plan-do Do-inspect-adapt

Feed-forward and feedback (design for
change and respond to change)

Feedback (react to change)

High throughput Low latency

Planning and responding Reacting

Focus on Process Focus on People

Teams (working as a unit) Individuals (and interactions)

Complicated systems Complex systems

Embrace standards Inspect and adapt

Rework in design adds value, in making is
waste

Minimize up-front work of any kind and
rework code to get quality

Bring decisions forward (Decision
Structure Matrices)

Defer decisions (to the last responsible
moment)

Introduction 13

Some of the disconnect between Agile and Lean comes not from their
foundations but from common misunderstanding and from everyday
pragmatics. Many people believe that Scrum insists that there be no
specialists on the team; however, Lean treasures both seeing the whole as
well as specialization:

[W]hen Toyota selects one person out of hundreds of job applicants
after searching for many months, it is sending a message – the capabili-
ties and characteristics of individuals matter. The years spent carefully
grooming each individual to develop depth of technical knowledge, a
broad range of skills, and a second-nature understanding of Toyota’s
philosophy speaks to the importance of the individual in Toyota’s
system. (Liker 2004, p. 186)

Scrum insists on cross-functional team, but itself says nothing about spe-
cialization. The specialization myth arises in part from the XP legacy that
discourages specialization and code ownership, and in part from the Scrum
practice that no one use their specialization as an excuse to avoid other
kind of work during a Sprint (Østergaard 2008).

If we were to look at Lean and Agile through a coarse lens, we’d discover
that Agile is about doing and that Lean is about thinking (about continuous
process improvement) and doing. A little bit of thought can avoid a lot
of doing, and in particular re-doing. Ballard (2000) points out that a little
rework and thought in design adds value by reducing product turn-around
time and cost, while rework during making is waste (Section 3.2.2). System-
level-factoring entails a bit of both, but regarding architecture only as an
emergent view of the system substantially slows the decision process.
Software isn’t soft, and architectures aren’t very malleable once developers
start filling in the general form with the structure of running code. Lean
architecture moves beyond structure to form. Good form is Lean, and that
helps the system be Agile.

Lean is about complicated things; Agile is about complexity. Lean
principles support predictable, repeatable processes, such as automobile
manufacturing. Software is hardly predictable, and is almost always a
creative – one might say artistic – endeavor (Snowden and Boone 2007).
Agile is the art of the possible, and of expecting the unexpected.

This book tells how to craft a Lean architecture that goes hand-in-glove
with Agile development. Think of Lean techniques, or a Lean architecture,
as a filter that prevents problems from finding a way into your development
stream. Keeping those problems out avoids rework.

Lean principles lie at the heart of architectures behind Agile projects. Agile
is about embracing change, and it’s hard to reshape a system if there
is too much clutter. Standards can reduce decision time and can reduce

14 Chapter 1

work and rework. Grandpa Harry used to say that a stitch in time saves
nine; so up-front thinking can empower decision makers to implement
decisions lightening-fast with confidence and authority. Lean architecture
should be rooted in the thought processes of good domain analysis, in
the specialization of deeply knowledgeable domain experts, and once in a
while on de facto, community, or international standards.

1.5.1 The Lean Secret
The human side of Lean comes down to this rule of thumb:

Everybody, All together, Early On

Using other words, we also call this ‘‘all hands on deck.’’ Why is this
a ‘‘secret’’? Because it seems that teams that call themselves Agile either
don’t know it or embrace it only in part. Too often, the ‘‘lazy’’ side of Lean
shines through (avoiding excess work) while teams set aside elements of
social discipline and process. Keeping the ‘‘everybody’’ part secret lets us
get by with talking to the customer, which has some stature associated
with it, while diminishing focus on other stakeholders like maintenance,
investors, sales, and the business. Keeping the ‘‘early on’’ part a secret
makes it possible to defer decisions – and to decide to defer a decision
is itself a decision with consequences. Yet all three of these elements are
crucial to the human foundations of Lean. We’ll explore the Lean Secret in
more depth in Chapter 3.

1.6 Lost Practices

We speak . . . about the events of decades now, not centuries. One advantage of
that, perhaps, is that the acceleration of history now makes us all historians.

The Clock of the Long Now, p. 16.

As we distilled our experience into the beginnings of this book, both of us
started to feel a bit uncomfortable and even a little guilty about being old
folks in an industry we had always seen fueled by the energy of the young,
the new, and the restless. As people from the patterns, Lean and object
communities started interacting more with the new Agile community,
however, we found that we were in good company. Agile might be the first
major software movement that has come about as a broad-based mature
set of disciplines.

Nonetheless, as Agile rolled out into the industry the ties back to experi-
ence were often lost. That Scrum strived to remain agnostic with respect to

Introduction 15

software didn’t help, so crucial software practices necessary to Scrum’s suc-
cess were too easily forgotten. In this book we go back to the fundamental
notions that are often lost in modern interpretation or in the practice of XP
or Scrum. These include system and software architecture, requirements
dependency management, foundations for usability, documentation, and
others.

1.6.1 Architecture

Electronically accelerated market economies have swept the world for good
reasons. They are grass-roots driven (by customers and entrepreneurs), swiftly

adaptive, and highly rewarding. But among the things they reward, as McKenna
points out, is short-sightedness.

The Clock of the Long Now, p. 25.

A project must be strong to embrace change. Architecture not only helps
give a project the firmness necessary to stand up to change, but also
supports the crucial Agile value of communication. Jeff Sutherland has
said that he never has, and never would, run a software Scrum without
software architecture (Coplien and Sutherland 2009). We build for change.

We know that ignoring architecture in the long term increases long-term
cost. Traditional architecture is heavily front-loaded and increases cost
in the short term, but more importantly, pushes out the schedule. This
is often the case because the architecture invests too much in the actual
structure of implementation instead of sticking with form. A structure-free
up-front architecture, constructed as pure form, can be built in days or
weeks, and can lay the foundation for a system lifetime of savings. Part
of the speedup comes from the elimination of wait states that comes from
all-hands-on-deck, and part comes from favoring lightweight form over
massive structure.

1.6.2 Handling Dependencies between Requirements
To make software work, the development team must know what other
software and features lay the foundation for the work at hand. Few Agile
approaches speak about the subtleties of customer engagement and end-
user engagement. Without these insights, software developers are starved
for the guidance they need while advising product management about
product rollout. Such failures lead to customer surprises, especially when
rapidly iterating new functionality into the customer stream.

Stakeholder engagement (Chapter 3) is a key consideration in require-
ments management. While both Scrum and XP encourage tight coupling
to the customer, the word ‘‘end user’’ doesn’t appear often enough, and

16 Chapter 1

the practices overlook far too many details of these business relation-
ships. That’s where the subtle details of requirements show up – in the
dependencies between them.

1.6.3 Foundations for Usability
The Agile Manifesto speaks about working software, but nothing about
usable software. The origins of Agile can be traced back to object orientation,
which originally concerned itself with capturing the end-user model in
the code. Trygve Reenskaug’s Model-View-Controller (MVC) architecture
makes this concern clear and provides us a framework to achieve usability
goals. In this book we build heavily on Trygve’s work, both in the classic
way that MVC brings end user mental models together with the system
models, and on his DCI work, which helps users enact system functionality.

1.6.4 Documentation

Suppose we wanted to improve the quality of decisions that have long-term
consequences. What would make decision makers feel accountable to posterity as

well as to their present constituents? What would shift the terms of debate from the
immediate consequences of the delayed consequences, where the real impact is? It

might help to have the debate put on the record in a way that invites serious review.

The Clock of the Long Now, p. 98.

Documentation gets a bad rap. Methodologists too often miss the point that
documentation has two important functions: to communicate perspectives
and decisions, and to remember perspectives and decisions. Alistair Cock-
burn draws a similar dichotomy between documentation that serves as a
reminder for people who were there when the documented discussions took
place, and as a tutorial for those who weren’t (Cockburn 2007, pp. 23–24).
Much of the Agile mindset misses this dichotomy and casts aspersions on
any kind of documentation. Nonetheless, the Agile manifesto contrasts the
waste of documentation with the production of working code: where code
can communicate or remember decisions, redundant documentation may
be a waste.

The Agile manifesto fails to explicitly communicate key foundations that
lie beneath its own well-known principles and values. It is change that
guides the Agile process; nowhere does the Manifesto mention learning or
experience. It tends to cast human interaction in the framework of code
development, as contrasted with processes and tools, rather than in the
framework of community-building or professional growth. Documentation
has a role there.

We should distinguish the act of writing a document from the long-term
maintenance of a document. A whiteboard diagram, a CRC card, and a

Introduction 17

diagram on the back of a napkin are all design documents, but they are
documents that we rarely archive or return to over time. Such documenta-
tion is crucial to Agile development: Alistair Cockburn characterizes two
people creating an artifact on a whiteboard as the most effective form of
common engineering communication (Figure 1-1).

(cold)

Richness (“temperature”) of communication channel

C
om

m
un

ic
at

io
n

E
ff

ec
tiv

en
es

s

2 people
on email

Paper

Video tape

Audio tape

2 people
on phone

(Questio
n-and-Answ

er)

(No Question-Answer)

2 people at
whiteboard

(hot)

Figure 1-1 Forms of communication documentation. From Cockburn (2007, p. 125).

It is exactly this kind of communication, supplemented with the artifact
that brings people together, that supports the kind of dynamics we want
on an Agile team. From this perspective, documentation is fundamental to
any Agile approach. There is nothing in the Manifesto that contradicts this:
it cautions only against our striving for comprehensive documentation, and
against a value system that places the documentation that serves the team
ahead of the artifacts that support end-user services.

In the 1980s, too many serious software development projects were
characterized by heavyweight write-only documentation. Lean architec-
ture replaces the heavyweight notations of the 1980s with lightweight but
expressive code. There in fact isn’t much new or Agile in this: such was
also the spirit of literate programming. Lean architecture has a place for
lightweight documentation both for communication and for team mem-
ory. Experience repeatedly shows that documentation is more crucial in a
geographically distributed development than when the team is collocated,
and even Agile champions such as Martin Fowler agree (Fowler 2006).

Code Does Not Stand Alone

In general, ‘‘the code is the design’’ is a good rule of thumb. But it is neither
a law nor a proven principle. Much of the crowd that advocates Agile today
first advocated such ideas as members of the pattern discipline. Patterns
were created out of an understanding that code sometimes does not stand

18 Chapter 1

alone. Even in the widely accepted Gang of Four book, we find that ‘‘it’s
clear that code won’t reveal everything about how a system will work.’’
(Gamma et al 2005, p. 23) We go to the code for what and how, but only the
authors or their documentation tell us why. We’ll talk a lot about why in
this book.

Documentation can provide broad context that is difficult to see in a
local chunk of code. Perhaps the best documentation is that which is auto-
matically generated from the code through so-called reverse engineering
tools. They can provide a helicopter view of a concrete landscape with a
minimum of interpretation and filtering. That honors the perspective that
the code is the design while rising above the code to higher-level views.
The right volume of more intelligently generated high-level documentation
can be even more valuable. Just following the code is a bit like following
a path through the woods at night. Good documentation is a roadmap
that provides context. More advanced roadmaps can even tell me why I
should take a certain direction (‘‘there are nettles on this path in July;
take the other path instead,’’ or, ‘‘we use stored procedures here instead
of putting the traversals in the business logic because the traversal is
simple, but changes frequently’’). Different constituencies might need dif-
ferent roadmaps (‘‘the architecture allows customer service to change route
lookups without engaging the programming staff’’). As Grandpa Harry
said, one size does not fit all. Using code as a map suits programmers well,
but other constituencies may need different sizes of maps.

Documentation can also be a springboard for discussion and action
in much the same way that a culture’s literature provides a backdrop
for reflection. This is particularly true of the kinds of domain models
we’ll develop in Chapter 5. To take all documentation as formal, literal
instruction is to undermine its highest value. Grandfatherly quotes on
this topic abound, from Dwight D. Eisenhower’s: ‘‘[P]lans are useless but
planning is indispensable’’ to the old military saw: ‘‘Trust the terrain, not
the map.’’ There is a story (whether true or not) about a group of Spanish
soldiers who became lost in the Pyrenees and who were desperately
seeking a path to civilization to secure their survival. One of the group
found a ratty old map in his luggage and the group squinted at the faded
document to find a way out. They eventually reached a town, inspired by
the life-saving document. Only later did they find that the map depicted
a distant region in the French Alps. It’s not so much what the map says
about the terrain: it’s what people read into the map. Again: ‘‘Trust the
terrain, not the map.’’ Updating the maps is good, too – but that means
choosing map technology that avoids both technical and cultural barriers
to currency. Document the important, timeless concepts so that change is
less likely to invalidate them. In areas of rapid change, create code that
needs minimal decoding; that’s one goal of DCI.

Introduction 19

Capturing the ‘‘Why’’

As David Byers urged us as we were formulating ideas in the early days
of this book, the why of software is an important memory that deserves
to be preserved. Philippe Kruchten underscores this perspective in his
IEEE Software article (Kruchten Capilla and Dueñas 2009). Though we can
efficiently communicate the why in oral communication with feedback, it
is the most difficult to write down. Alistair Cockburn notes that we need
cultural reminders that capture valuable decisions. Human transmission of
the ideas, practices, and memes of development is still the most important,
so we still value domain experts and patterns like Alistair’s Day Care
(Coplien and Harrison 2004, pp. 88–91): to place a treasured expert in
charge of the novices so the rest of the team can proceed with work. Jeff
Sutherland tells that at PatientKeeper, the architects gave a chalk talk about
the system architecture – a talk that is kept in the company’s video library
and which is a cornerstone of team training. The written media are just
another way to record and present why: a way that supports indexing,
convenient real-time random access, and which becomes a normative
cultural artifact that can contribute to Lean’s goal of consistency.

It takes work to write things down, but the long-term payoff is usually
worth it. The authors of The Clock of the Long Now argue why long-term
documentation might be a good idea:

One very contemporary reason is to make the world safe for rapid
change. A conspicuously durable library gives assurance: Fear not.
Everything that might need to be remembered is being collected . . . we’re
always free to mine the past for good ideas. (Brandt 1995, p. 94)

This first chapter is our own attempt to explain the why of Lean architec-
ture and Agile software development. We know it is a bit long, and we’ve
explored many ways to cut it down, but decided that what remains here is
important.

1.6.5 Common Sense, Thinking, and Caring
Finally, this book is about simple things: code, common sense, thinking, and
caring. Code is the ever-present artifact at the core of the Agile development
team. Properly done, it is an effigy of the end-user conceptual model. It
constantly reminds the programmer of end-user needs and dreams, even
when the customer isn’t around. In the end, it all comes down to code, and
that’s because code is the vehicle that brings quality of life to end users.

Common sense hides deeply within us. Thinking and caring are equally
simple concepts, though they require the effort of human will to carry out.

20 Chapter 1

Will takes courage and discipline, and that makes simple things look hard.
That in turns implies that simple things aren’t simplistic. As we said in
the Preface, we try to find the fewest simple things that together can solve
complex problems.

As the intelligent designer in the middle, we sometimes must wrestle
with the entire spectrum of complexity. But we should all the while strive
to deliver a product that is pure. It’s like good cooking: a good cook
combines a few pure, high quality ingredients into a dish with rich and
complex flavor. The chef combines the dishes with carefully chosen wines
in a menu du jour whose tastes and ingredients are consistent and that
complement each other. That’s a lot better than trying to balance dozens
of ingredients to achieve something even palatable, or throwing together
ingredients that are just good enough. Such food is enough for survival,
but we can reach beyond surviving to thriving.

Like a cook, a programmer applies lean, critical thinking. Keep the set of
ingredients small. Plan so you at least know what ingredients you’ll need for
the meals you envision. That doesn’t necessarily mean shopping for all the
ingredients far in advance; in fact, you end up with stale-tasting food if you
do that. Software is the same way, and Lean thinking in particular focuses
on designing both the meal and the process to avoid waste. It places us in
a strategic posture, a posture from which we can better be responsive when
the need arises. Maybe Agile is more about reacting while Lean is about
responding. It’s a little like the difference between fast food and preparing
a meal for guests. Both have a place in life, and both have analogues in
software development. But they are not the same thing. And it’s important
to distinguish between them. Barry Boehm speaks of a panel that he was
asked to join to evaluate why software caused rockets to crash. Their
conclusion? ‘‘Responding to change over following a plan’’ (Boehm 2009).

Much of this book is about techniques that help you manage the overall
form – the culinary menus, if you will – so you can create software that
offers the services that your end users expect from you. It’s about lining
things up at just the right time to eliminate waste, to reduce fallow inven-
tory, and to sustain the system perspectives that keep your work consistent.

Last, we do all of this with an attitude of caring, caring about the human
being at the other end. Most of you will be thinking ‘‘customer’’ after
reading that provocation. Yes, we care about our customers and accord
them their proper place. We may think about end users even more. Agile
depends on trust. True trust is reciprocal, and we expect the same respect
and sense of satisfaction on the part of developers as on the part of end
users and customers. Nerds, lest we forget, we care even about those nasty
old managers. Envision a team that extends beyond the Scrum team, in an
all-inclusive community of trust.

Introduction 21

That trust in hand, we’ll be able to put powerful tools in place. The Lean
Secret is the foundation: everybody, all together, from early on. Having
such a proverbial round table lightens the load on heavyweight written
communication and formal decision processes. That’s where productivity
and team velocity come from. That’s how we reduce misunderstandings
that underlie what are commonly called ‘‘requirements failures.’’ That’s
how we embrace change when it happens. Many of these tools have been
lost in the Agile rush to do. We want to restore more of a Lean perspective
of think and do, of strategy together with tactics, and of thoughtfully
responding instead of always just reacting.

1.7 What this Book is Not About

This is not a design method. Agile software development shouldn’t get
caught in the trap of offering recipes. We as authors can’t presume upon
your way of working. We would find it strange if the method your
company is using made it difficult to adopt any of the ideas of this book;
it’s those ideas we consider important, not the processes in which they are
embedded.

While we pay attention to the current industry mindshare in certain fad
areas, it is a matter of discussing how the fundamentals fit the fads rather
than deriving our practices from the fads. For example, we believe that
documentation is usually important, though the amount of documentation
suitable to a project depends on its size, longevity, and distribution. This
brings us around to the current business imperatives behind multi-site
development, which tend to require more support from written media
than in a geographically collocated project. We address the documentation
problem by shifting from high-overhead artifacts such as comprehensive
UML documents2 to zero-overhead documentation such as APIs that
become part of the deliverable, or through enough low-overhead artifacts
to fit needs for supplemental team memory and communication.

The book also talks a lot about the need to view software as a way to
deliver a service, and the fact that it is a product is only a means to that end.
The word ‘‘service’’ appears frequently in the book. It is by coincidence only
that the same word figures prominently in Service-Oriented Architecture
(SOA), but we’re making no conscious attempt to make this a SOA-
friendly book, and we don’t claim to represent the SOA perspective on
what constitutes a service. If you’re a SOA person, what we can say is: if
the shoe fits, wear it. We have no problem with happy coincidences.

2 That they are comprehensive isn’t UML’s fault by the way. UML is just a tool, and it can be
used tastefully or wastefully.

22 Chapter 1

We don’t talk about some of the thorny architectural issues in this book
such as concurrency, distribution, and security. We know they’re impor-
tant, but we feel there are no universal answers that we can recommend
with confidence. The spectra of solutions in these areas are the topics of
whole books and libraries relevant to each. Most of the advice you’ll find
there won’t contradict anything that we say here.

The same is true for performance. We avoid the performance issue in
part because of Knuth’s Law: Premature optimization is the root of all evil.
Most performance issues are best addressed by applying Pareto’s law of
economics to software: 80% of the stuff happens in 20% of the places. Find
the hot spots and tune. The other reason we don’t go into the art of real-
time performance is partly because so much of the art is un-teachable, and
partly because it depends a great deal on specific domain knowledge. There
exist volumes of literature on performance-tuning databases, and there
are decades of real-time systems knowledge waiting to be mined. That’s
another book. The book by Noble and Weir (Noble and Weir 2000) offers one
set of solutions that apply when memory and processor cycles are scarce.

Though we are concerned with the programmer’s role in producing
usable, habitable, humane software, the book doesn’t focus explicitly on
interaction design or screen design. There are plenty of good resources on
that; there are far too many to name here, but representative books include
Graham (2003) for practical web interface design, (Raskin 2000) for practical
application of interaction design theory, and Olesen (1998) for mechanics.
We instead focus on the architectural issues that support good end-user
conceptualization: these are crucial issues of software and system design.

1.8 Agile, Lean – Oh, Yeah, and Scrum
and Methodologies and Such

If any buzzwords loom even larger than Agile on the Agile landscape itself,
they are Scrum and XP. We figured that we’d lose credibility with you if
we didn’t say something wise about them. And maybe those of you who
are practicing Scrum confuse Lean with Scrum or, worse, confuse Agile
with Scrum. Scrum is a great synthesis of the ideas of Lean and Agile, but
it is both more and less than either alone. Perhaps some clarification is in
order. This section is our contribution to those needs.

This book is about a Lean approach to architecture, and about using
that approach to support the Agile principles. Our inspirations for Lean
come through many paths, including Scrum, but all of them trace back to
basics of the Lean philosophies that emerged in Japanese industry over the
past century (Liker 2004): just-in-time, people and teamwork, continuous

Introduction 23

improvement, reduction of waste, and continuous built-in quality. We
drive deeper than the techno-pop culture use of the term Lean that focuses
on the technique alone, but we show the path to the kind of human
engagement that could, and should, excite and drive your team.

When we said that this book would build on a Lean approach to
architecture to support Agile principles, most of you would have thought
that by Agile we meant ‘‘fast’’ or maybe ‘‘flexible.’’ Agile is a buzzword that
has taken on a life of its own. Admittedly, even speed and flexibility reflect
a bit of its core meaning. However, in this book we mean the word in the
broader sense of the Agile Manifesto (Beck et al 2001). Speed and flexibility
may be results of Agile, but that’s not what it is. The common laws behind
every principle of the Manifesto are self-organization and feedback.

Scrum is an Agile framework for the management side of development.
Its focus is to optimize return on investment by always producing the most
important things first. It reduces rework through short cycles and improved
human communication between stakeholders, using self-organization to
eliminate wait states. Scrum encourages a balance of power in development
roles that supports the developers with the business information they need
to get their job done while working to remove impediments that block
their progress.

This is not a Scrum book, and you probably don’t need Scrum to make
sense of the material in this book or to apply all or part of this book to your
project. Because the techniques in this book derive from the Agile values,
and because Scrum practices share many of the same foundations, the two
complement each other well.

In theory, Scrum is agnostic with respect to the kind of business that uses
it, and pretends to know nothing about software development. However,
most interest in Scrum today comes from software development organi-
zations. This book captures key practices such as software architecture
and requirements-driven testing that are crucial to the success of software
Scrum projects (Coplien and Sutherland 2009).

Agile approaches, including Scrum, are based on three basic principles:

1. Trust
2. Communication
3. Self-organization

Each of these values has its place throughout requirements acquisition
and architecture. While these values tend to touch concerns we commonly
associate with management, and architecture touches concerns we com-
monly associate with programmers, there are huge gray areas in between.
These areas include customer engagement and problem definition. We take
up those issues, respectively, in Chapter 3 and Chapter 4. Those in hand,
we’ll be ready to move toward code that captures both what the system is

24 Chapter 1

and what the system does. But first, we’ll give you a whirlwind tour of the
book in Chapter 2.

1.9 History and Such

Like a tree, civilization stands on its past.

The Clock of the Long Now, p. 126.

‘‘Lean production’’ came into the English language vernacular in a 1991
book by Womack, Jones, and Roos (Womack et al 1991). The book presented
manufacturing models of what automobile manufacturer Toyota had been
doing for decades. ‘‘Lean production’’ might better be called the Toyota
Production System (TPS).

The Toyota Way has its roots in Sakichi Toyoda, a carpenter who went
into the loom business in the late 1800s. Toyoda was influenced by the
writings of Samuel Smiles, who chronicled the passion of great inventors
and the virtue of attentive, caring production and empirical management
(Smiles 1860). Toyoda formed Toyoda Automatic Loom Works in 1926. It
used steam-powered looms that would shut down when a thread broke, so
it could be repaired and the piece of cloth could thereby be rescued instead
of becoming waste. These looms generated the fortune that would launch
Toyota Motor Corporation in 1930 at the hand of his son, Kiirchiro Toyoda.

In the post-war reconstruction, Toyoda took note of inefficiencies in
Ford in the U.S. Drawing on some of Ford’s original ideas which had been
misread or badly implemented by his namesake company, with a nod to
Taylor’s empirical methods and Deming’s statistical process control (SPC),
the new Toyota president Eiji Toyoda gave the Toyota Production System
many of the concepts that we associate with Lean today: single-piece
continuous flow, low inventory, and just-in-time delivery. Deming’s Plan-
Do-Act cycle would become a foundation of kaizen: continuous, relentless
process improvement.

Toyota refined and grew its manufacturing approaches. In about 1951
Toyota added the practices of Total Productive Maintenance (TPM) to the
Toyota Way. Associated with the spotless Toyota service garages and the
silhouettes that ensure that every tool is returned to its proper place, TPM
is perhaps a better metaphor for the ongoing software life cycle than TPS
is – though TPS is a great foundation for system architecture (Liker 2004,
pp. 16–25).

Some Lean concepts appeared in recognized software practice as early as
the 1970s. Everybody, all together, from early on is a time-honored technique.
One early (1970s), broadly practiced instance of this idea is Joint Applica-
tion Design, or JAD (Davidson 1999). JAD was a bit heavyweight, since it

Introduction 25

involved all the stakeholders, from the top management and the clients to
the seminar secretary, for weeks of meetings. While it probably didn’t admit
enough about emergent requirements (its goal was a specification), its con-
cept of broad stakeholder engagement is noteworthy. Letting everybody
be heard, even during design, is a lost practice of great software design.

In the early 1990s Jeff Sutherland would become intrigued by a Harvard
Business Review article, again about Japanese companies, called The New
New Product Development Game, authored by Hirotaka Takeuchi and Ikujiro
Nonaka (Takeuchi and Nonaka 1986). Its tenets, together with ideas from
iterative development and time boxing, and some practices inspired by an
early draft of the Borland study published in Dr. Dobbs Journal (Coplien
and Erickson 1994), led to the birth of Scrum.

Lately, Lean has made more inroads into the software world from the
manufacturing world. The excellent work of Mary and Tom Poppendieck
(e.g., Poppendieck and Poppendieck 2006) features many elements of
the Toyota Production System, though it tends to focus less on up-front
decisions and value streams than historic Lean practice does.

C H A P T E R

2

Agile Production in a Nutshell

This is the big-picture chapter, the get-started-quick chapter. It’s for those
readers who make it only through the first pages of most books they pick
up in spite of best intentions to struggle through to the end. We got you
this far. Hold on for eight pages as we describe six basic activities of Lean
Architecture and Agile software development.

These activities are neither waterfall phases nor steps; however, each
one provides a focus for what a team member is doing at any given time.
The ensuing chapters are:

■ Chapter 3: Stakeholder Engagement
■ Chapter 4: Problem Definition
■ Chapter 5: What the System Is, Part I: Lean Architecture
■ Chapter 6: What the System Is, Part II: Coding It Up
■ Chapter 7: System Functionality
■ Coding it up: Chapter 8: Basic assembly, and Chapter 9: The DCI

Architecture

Here’s the skinny on what’s to come.

2.1 Engage the Stakeholders

What is a ‘‘stakeholder’’? Team members, system engineers, architects, and
testers all have a stake in creating sound system form. There may be many
more: use your imagination. People appreciate being invited to the party
early. And remember the Lean Secret: everybody, all together, from early on.

27

28 Chapter 2

Identify the people and systems that care that this system even exists,
what it does, or how it does it. Remember that you are building a system. A
system (Weinberg again) is a collection of parts, none of which is interesting
if separated from the others. Snowden defines it as ‘‘a network that has
coherence.’’ (Snowden 2009) When you are building a system, you need a
system view – and in the system view, everything matters.

In the following chapters, we’ll often divide the system roughly in
two. As shown in Figure 2-1, one part is what the system is; the other
part is what the system does. (We will use variations of this figure several
times throughout the book to illustrate the lean architecture principles.) The
what-the-system-is part relates to what is commonly called the architecture
or platform: the part that reflects the stable structures of the business over
time. Our key stakeholders for that part of the system are domain experts,
system architects, and the wise gray-haired people of the business. The
what-the-system-does part relates to the end user’s view of the services
provided by the system: the tasks the system carries out for users and the
way those tasks are structured. The end user, user experience folk, interface
designers, and requirements folks are the key stakeholders in this part of the
system. Of course, this system dichotomy isn’t black and white, and even
if it were, most people have insights that can inform both of these areas.

User doing
Roles, identifiers,
 activation records
End Users
User Experience
 people
Interface designers
Ever-changing
 functionality

User thinking
Classes & Objects
Domain Experts
Architects
Database schemata
Long-term stable
 structure

W
hat the system does

W
hat the system is

Figure 2-1 What the system is, and what the system does.

While we must acknowledge emergence in design and system devel-
opment, a little planning can avoid much waste. Grandpa Harry used
to quote George Bernard Shaw in saying that good fences make good

Agile Production in a Nutshell 29

neighbors – and Grandpa Harry knew that Shaw was cynical in that
observation, much preferring that there be no fences at all.

By all means, don’t fence off your customer: customer engagement is
one of the strongest of Agile principles. But it doesn’t mean dragging
the customer or end user into your workplace and interrogating them, or
keeping them on hand to clarify important perceptions on a moment’s
notice. It means getting to know them. As a rural postal carrier, Grandpa
Harry got to know his clients over time by being attentive to the upkeep
of their farms and by noticing the kind of mail they received. He would
recall Yogi Berra’s quip: You can observe a lot just by watching. That’s
how it should be with customers: to understand their world-model and
to reflect it in our design. In fact, this goes to the original foundations of
object-oriented programming: the goal of Simula (the first object-oriented
programming language, created in 1965 and fitted with object-oriented
features in 1967) was to reflect the end user world model in the system
design. That key principle has been lost in decades of methodology and
programming language obfuscation, and we aim to help you restore it here.

2.2 Define the Problem

Grandpa Harry used to say that if you didn’t know where you were going,
any road would get you there. Get the group together to write a short, crisp
problem definition. We like Jerry Weinberg’s definition of problem: the dif-
ference between the current state and a desired state. Write down this com-
pass heading in a sentence or two. If the group collectively owns a notion of
what problem they are solving, then they can own the notion of done when
you’re done. So we start with a one- or two-sentence problem definition.

Do this early in the project. A problem definition is a better compass
than the first release’s feature set, or the map of a domain which is yet
unexplored. Don’t wait until you’ve engaged every last stakeholder: great
projects start with a visionary and vision rather than a market analysis.
The important market analysis will come soon enough. Again, remember:
everybody, all together, from early on.

Without a problem definition, it’s hard to know when you’re done. Sure,
you can tick off some list of tasks that you may actually have completed
and which were initially designed to bridge the gap between the current
and desired state, but that doesn’t mean that you’re done. Emergent
requirements cause the landscape to shift during development, and even
the best-planned path may not lead you to the best-conceived destination.

For the same reasons, be sure to check both your destination and your
current compass heading in mid-journey. Revisit your problem definition
once in a while to make sure it’s current.

30 Chapter 2

2.3 Focusing on What the System Is:
The Foundations of Form

How do [ecological systems] manage change, and how do they absorb and
incorporate shocks? The answer appears to lie in the relationship between

components in a system that have different change rates and different scales of size.

The Clock of the Long Now, p. 34.

As is true for a house, software architecture just is: what the system does
is what we make of it, tying building blocks together with the activities
of business life. A house is not a tea party, but a good architecture can
make a tea party more enjoyable, convenient, and even beautiful. Such is
the dance between architecture and function in software – like the dance
of a tightrope walker on the rope and balconies of a humble but beautifully
sturdy setting.

Every system has two designs, i.e., reflects two kinds of intents: the
design of its functionality – what it does – and the design of its form – what
it is. At the beginning of a project you need to focus on both. This double-
edged focus applies not only to good beginnings but is at the heart of
long-term product health: the form, to establish a firm foundation for
change, and the functionality to support end-user services.

Grandpa Harry was an ardent woodsman, and we’d sometimes find
ourselves miles from nowhere in the wilderness. He used to say: Trust the
terrain, not the map. The terrain is the part that some methodologies call
architecture. We can call it Lean architecture. It is what the system is – as
contrasted with what the system does, which we’ll talk about later.

We’ll introduce an architectural strategy that lays a foundation of abstract
base classes early in the project. That establishes the basic form the system
will take on over its lifetime. The structure of the system follows the form.
It’s not that form follows function, but function and form weave together
into a real structure that we call member data and methods.1 And when
we do come to structure, we’ll focus on the objects rather than classes
(Figure 2-2). Classes are more of a nerd thing; objects relate to the end
user and to the business. The initial base classes we’ll put in place are
placeholders for objects of many different classes – the fact that they are
abstract classes distances us from the class specifics. Yes, we’ll come to
classes soon enough, and there’s some cool stuff there. But objects should
dominate the design thought process.

1 Architectural critic Witold Rybczynski notes that in building architecture, form doesn’t follow
function: it follows failure (Rybczynski 1987). Contemporary design is embracing this perspective
more and more. See Petroski (1992).

Agile Production in a Nutshell 31

Objects

W
hat the system does

W
hat the system is

Figure 2-2 Focusing on what the system is: its form.

The end user mental model is one sound foundation for architecture,
and domain knowledge helps us think critically and soberly about user
models in light of longstanding experience. Think of domain expertise as
a broadening of user expertise into the realms of all stakeholders taken
together. Expert developers learn over time what the fundamental building
blocks of a given system should be.

Of course, in real development we work on the problem definition,
architecture, and use cases in parallel. From a conceptual perspective,
architecture and its articulation give us vocabulary and solid foundations
for use case implementation later on. So, guess what: everybody, all together,
from early on rules again. So can up-front on architecture be Agile? Yes: even
XP admits the need for architecture (Beck 1999, p. 113). We do architecture:

1. To capture stakeholders’ perspectives that affect design;
2. To embrace change and to reduce the cost of solving problems;
3. To create a shared vision across the team and the stakeholders;
4. To smooth the decision-making process.

Software architecture disciplines from the 1980s delivered a truckload
of artifacts that preceded the first line of code – artifacts never seen by the
end user. That isn’t Lean. Lean architecture very carefully slices the system
to express the essence of system form in source code. While the interface
is the program (Raskin 2000), the code is the design (Reeves 2005) – and
architecture helps us see it from a perspective that’s often invisible in the
source code. We deliver a thin shell of declarative, compilable code: domain

32 Chapter 2

class interfaces as source code contracts, boilerplate, a domain dictionary
and a bit of documentation.

We’ll talk in Section 5.1 about the value of making decisions about form
early in the project. Deferring these decisions reduces timely feedback that
comes in the form of emergent requirements as we strive to realize the sys-
tem form. It also leaves more time to add structure to the system in an unin-
formed way – structure that will have to be redone when we take the time
to consider proper form. Good form up front reduces cost in the long term.

2.4 Focusing on What the System Does:
The System Lifeblood

The architecture in place, we have a firm foundation where we can stand
and respond to change. Most changes are new or revised end-user services.
It is these services, where the action is, that are at the heart of system
design. To belabor the metaphor with building architecture: whereas
buildings change over decades and centuries (Brandt 1995), computers
enact tasks at human time scales, and this animation is key to their role in
life. It’s important to collect and frequently refresh insights about the end
user’s connection to these system services.

We capture the end user’s mental model of these services as the roles
or actors they envision interacting inside the program (or in a real-world
system controlled by the program), and by the interactions between these
roles. Such modeling is a foundation of good interface design (Raskin 2000)
and is the original foundation of the object paradigm (Reenskaug, Wold,
and Lehne 1995; Laurel 1993).

Use cases capture roles and their interactions well. They are not only
a good tool to elicit, explore, refine, and capture end user world models
(if used in a user-centered, incremental way) but also serve to orga-
nize requirements by their functional grouping, mutual dependency, and
priority ordering.

A sound architecture provides a context in which the user scenarios can
unfold. These scenarios have two parts: the pure business logic, and the
domain logic that supports the scenario. Most architectural approaches
would have us do the ‘‘platform’’ code up front. We establish the form up
front, but we wait to fill in the structure of the domain logic until we know
more about the feature. And architecture lubricates the value stream: when
the feature comes along, we don’t have to create the form from scratch. It’s
already there.

So we start with Grandpa Harry’s saw again: you can observe a lot
just by watching. We observe our users and become sensitive to their

Agile Production in a Nutshell 33

Objects

Use Case scenario
Roles (Actors in
Use Case-speak)

W
hat the system does

W
hat the system is

Figure 2-3 Focusing on what the system does.

needs, so our software improves their business. User experience folks
capture business models, task flows, and end-user cognitive models; screen
designers build prototypes; but the programmer is continuously engaged,
collecting insights to be used during the coding sprint. Testers pay close
heed to what the system is supposed to do. The programmer also keeps
an eye on all the code that has to work together with the new stuff, so the
current base and neighboring software systems also come into analysis.

This is an exploration activity but, in the spirit of Scrum, we always
want to focus on delivering something at the end of every work cycle. The
artifacts that we deliver include:

1. Screen Designs, so the program not only works, but is usable;
2. Input to the Domain Model, to scope the domain;
3. Use cases, to organize the timing of responsible decisions.

2.5 Design and Code

Grandpa Harry not only built two houses for himself and worked on count-
less others, but was also a pretty good cabinetmaker. He was acquainted
both with structure in the large and in the small. When it came down to
construction, he’d say: Measure twice, cut once. And as life went on, he
re-designed parts of the house, built new furniture, changed a bedroom
into a library, and made countless other changes.

It all comes down to code, and taking your design into code will flush
out issues that help you see the big picture more clearly. By this time, many

34 Chapter 2

emergent requirements have been flushed out, and implementation can
often move swiftly ahead. Developers lead the effort to produce code for
the desired end-user services. With respect to process, we don’t distinguish
between code in the ‘‘architecture part’’ part and the ‘‘use case part’’ at this
point. We code up what it takes to deliver business value. The stakeholders
should be at hand to clarify needs. And this is where the testers turn use
cases into tests and run them.

The main activities at this point are:

1. Turn the use case scenarios into algorithms and craft the roles that
will be the home for the code that reflects end-user understanding of
system scenarios. This is one of the most exciting parts of the book,
as it builds on the recently developed DCI (Data, Context and
Interaction) architecture from Trygve Reenskaug. This is code that
you can inspect, analyze, and test more easily than under a simple
object-oriented approach.

2. Write system tests.
3. Tailor the domain class interfaces to the new algorithms.
4. Code up the algorithms in the role code and the support logic in the

domain code, re-factoring along the way.
5. Run the newly written system tests against the new code.

The output is running, tested, and documented code and tests. The
functional code in the DCI architecture – what the system does – has the
curious property of being readable with respect to requirement concerns.
We have an updated domain architecture – what the system is – to support
the new functionality.

2.6 Countdown: 3, 2, 1 . . .

There, you have it: everything your mother should have taught you about
Lean software architecture and how it supports Agile development. We’ll
tell you a lot more about our perspectives on these ideas in the coming
pages. Don’t be a slave to what we tell you but let our perspectives
challenge and inspire your thinking. We think that you’ll stumble onto
new ways of seeing many of these things.

C H A P T E R

3

Stakeholder Engagement

‘‘Individuals and interactions over processes and tools,’’ and ‘‘Customer
collaboration over contract negotiation’’ comprise half of the values of the
Agile Manifesto. These values are no less suitable to architecture than to
any other facet of Agile development, and they lie at the heart of this
chapter. Perhaps we hear much about the other two principles of working
software and embracing change because they’re closer to the programmer,
and because popular Agile is a programmers’ movement. Maybe half of
software development is about nerd stuff happening at the whiteboard
and about typing at the keyboard. But the other half is about people and
relationships. There are few software team activities where this becomes
more obvious than during architecture formulation.

This chapter is about the people in a software development effort, the
roles they play, and a little bit about the processes that guide them. To
summarize the chapter, everyone is in some small part an architect, and
everyone has a crucial role to play in good project beginnings. We’ll maybe
have some surprising things to say about customers and architects, too.

3.1 The Value Stream

Software people work together to build products such as programs and
documentation, each one of which adds value to the end user. They also
build internal artifacts and go through internal processes that individually
have value. The question is: who has responsibility for timely product
delivery to the customer? In today’s software management it is typically a
Product Manager or Project Manager. Such managers do often intervene

35

36 Chapter 3

or ‘‘swoop into development’’ on an emergency basis to push a product to
delivery. That violates the Lean principle of evening out flow. Here come
stress, overtime, and cutting corners on the process to make the end date.
Instead, we want a manager who owns the entire process of production and
who can be accountable to the customer for timely delivery. If an enterprise
consistently doesn’t deliver, it should be viewed as an end-to-end process
problem. This end-to-end process, its people, and its processes are called
the value stream.

Lean production organizes around value streams instead of production
steps. This organization structure has repercussions for the role structure
of the organization. Instead of emphasizing the managers for each of the
stovepipes, or of highlighting individual areas of specialization, we look at
the whole. This may strike you as a bit odd if you’re from a typical Western
software company. We’ll try to make this more real and concrete over the
next few pages. Scrum, in fact, is based on exactly these principles, with
cross-functional teams, and a role called the ScrumMaster who owns the
end-to-end process. Alistair Cockburn’s organizational pattern Holistic
Diversity (Coplien and Harrison 2004, pp. 142–144) also talks about the
benefits of cross-functional teams.

3.1.1 End Users and Other Stakeholders as Value
Stream Anchors
Going back to that saw, ‘‘Customer collaboration over contract negoti-
ation’’ brings to mind another human-centered artifact of development:
requirements, or whatever term one chooses to ascribe to them. Though the
values of the Manifesto don’t mention end users, Agile practices tend to
focus on the informally communicated needs of users, commonly called
user stories. Now you’ve picked up a book about architecture – one that
even dares to use the word requirements – and perhaps you’re afraid that
all of that will go away.

No, don’t worry: in fact, we’re going to pursue the Agile perspective even
further. We’ll venture beyond just the paying customer to the even more-
important end user, who is often a different person than the customer. Our
main value stream stops there.

In fact, many different stakeholders derive value from your product.
We feed multiple, hopefully complementary value streams: one each for
end users, customers, employees, stockholders, and each of the other
potential stakeholders in the business. We can understand some of these
stakeholding relationships in terms of raw economics: both customers and
end users can benefit from low incremental cost and fast incremental time
to market. End users are stakeholders who, apart from the economics,
want a well-tailored solution to their problem, including ease of use. The

Stakeholder Engagement 37

solution and the economics to make it feasible are part of the end-user
value proposition. Both Lean and Agile help us out here. Lean teaches us
that the value stream is important, and that every activity and every artifact
should contribute to end-user value. Agile’s ‘‘customer collaboration’’ lets
the value stream reach the deepest recesses of the software development
process so user needs are explicit and visible to the vendor community.

There are important stakeholders outside your market as well. Your
company benefits from a high return on investment (ROI), which comes
from low cost and good sales. While good sales come from meeting market
stakeholders’ needs, low costs relate to how vendors meet internal needs.
Designers, coders and testers have more fulfilling jobs if they feel they are
contributing to the value stream: reducing time to market by shortening the
development interval, and reducing cost by reducing frustrating rework.
We can reduce rework by carefully watching and listening to our customers
and to the market on one hand, but to history and standards on the other.
So both Lean and Agile can help on the vendor side, too.

3.1.2 Architecture in the Value Stream
The main goal of Lean is to create a value stream, every one of whose
activities adds value to the end user. Architecture too often is viewed as
an awkward cost rather than as something that provides end-user value.
Where does architecture fit in the value stream? Again, the interplay of
Lean and Agile adds end-user value:

■ Time: A good architecture shortens the time between understanding
user needs and delivering a solution. It does this by eliminating
rework and by providing a de-facto standard framework based on the
end user domain model.

■ Function: Unlike traditional architecture which deals almost
exclusively with domain structure, the Agile production side of this
book embraces the deep form of function and gives it first class
standing in the architecture. This focus improves the likelihood that
we will deliver what the customer expects.

■ Cost: A Lean process results in cost savings that can be passed on to
the user. These cost savings come from reducing the distance between
the end user world model and the code structure and from reduced
waste, including just-in-time feature production. We can also avoid
rework with enough up-front deliberation, built on history and
experience, that we can generalize our overall approach and the basic
system form without the clutter of premature implementation.

Lean adds yet more to the value stream with a vision that helps keep
the system consistent. A good architecture is a de-facto standard that

38 Chapter 3

helps system parts fit together. Agile keeps the links in the value stream
consistent with each other through ‘‘individuals and interactions over
processes and tools.’’ The feedback in Agile supports Lean’s goal of
consistency, while Lean’s trimmed and fit processes make Agile change
more flexible. Together, all of these contribute to reduced time and cost.
[CoWeLa 1998]

Architecture is not just a band-aid that Agile projects apply to technical
debt or to prepare for upcoming massive changes. By then, it’s too late.
Architecture is an ongoing discipline with a substantial up-front planning
component. Done right, the up-front planning can go quickly. Done right,
the planning can provide the thinking tools that make incremental feature
development as inexpensive as it can be. Architecture is the framework
for, and result of, such thinking.

Along with eliminating waste and smoothing out flow, overall con-
sistency completes the three fundamental goals of Lean. To a software
team that means making the product consistent with end user needs.
That implies a many-way consistency between end user mental models,
end user actions, use cases, the code, its architecture, tests, the human
interface – everything, everyone, everywhere. If everyone is communicat-
ing at just the right time we can avoid inconsistent actions that lead to
waste and irregular production. And it’s hard to schedule the ‘‘right time’’
in advance because the future is full of surprises. You could wait until you
were done coding and testing to engage the sales people, but maybe they
want to develop an advertising campaign that they can launch right when
you’re done. You could wait until you’re done coding to make friends with
the testers, but engaging them early smoothes later communication and
builds the environment of team trust that is crucial to success. Lean offers
a powerful answer to these problems: the Lean Secret.

3.1.3 The Lean Secret
To make Lean work requires a carefully coordinated and synchronized
team that is focused on end user value and on continuously improving
that value. The key to success in both Lean and Agile is the Lean Secret:
Everybody, all together, from early on. This ‘‘secret’’ is what makes the human
side of Lean work.

The roots of Lean go back to just-in-time delivery concepts developed by
Kiichiro Toyoda in Toyota’s predecessor company in the early twentieth
century. The system became defunct after the war, and was revamped by
an engineer in charge of final car assembly in Toyota at the time, Taiichi
Ohno. He based the key Lean tenets on reduced waste, on consistency and
order, and on maintaining a smooth process flow without bunching or

Stakeholder Engagement 39

jerkiness (Liker 2004, Chapter 2). Honda operated the same way (Takeuchi
and Nonaka 1986, p. 6):

Like a rugby team, the core project members at Honda stay intact
from beginning to end and are responsible for combining all of the
phases.

The first step is to avoid waste: taking care to make the best use of
materials and to not produce anything unless it adds value to the client.
The second step is to reduce inconsistencies by making sure that everything
fits together and that everyone is on the same page. The third step is to
smooth out flow in the process, reducing internal inventory and wait states
in the process.

Parts of the Agile world embody Lean principles in different measures.
Too many Agile rules of thumb have roots in a naive cause-and-effect
approach to Lean principles. They might reason as follows: to reduce
waste, reduce what you build; to reduce what you build, remove the
thing furthest from the client: the internal documentation. To reduce
inconsistencies, defer any decision that could establish an inconsistency,
and introduce tight feedback loops to keep any single thread of progress
from wandering too far from the shared path. To smooth out flow, keep
the work units small. To reduce the work of making decisions, defer or
ignore them.

While some of these practices (such as small work units) are squarely in
the center of Lean practice, others are overly brute-force attempts that can
benefit from exactly the kind of systems thinking that Lean offers. Ballard
(2000) has developed a model of Lean production based on a few simple
concepts:

■ Rework in production creates waste. However, design without
rework is wasted time. If design rework is a consequence of a newly
learned requirement, it saves even more expensive rework that would
arise in production. Rework in design creates value.

■ You can increase the benefits of such rework in design, and avoid
rework in production, by engaging all stakeholders together (a
cross-functional team) as early as possible.

■ Make decisions at the responsible moment – that moment after which
the foregone decision has a bearing on how subsequent decisions are
made, or would have been made. Note that ‘‘[k]nowledge of the lead
times required for realizing design alternatives is necessary in order
to determine last responsible moments’’ (Ballard 2000). Therefore,
line up dependencies early to optimize the decision-making process:
front-load the process with design planning. There is rarely any

40 Chapter 3

difference between the first responsible moment and the last
responsible moment: it’s just the responsible moment. Not to decide is to
decide; not to decide is a decision that has consequences. No matter
what you do, or don’t do, it has consequences. Maybe rework is
caused by work done before or after the responsible moment.1

In addition to these principles, Ballard adds that batch sizes should
be small and that production should use feedback loops carrying even
incomplete information.

This combination of teamwork, iteration, and up-front planning is part
of Lean’s secret – more insights that are too often lost in the Agile world.
Agile often fails to value up-front design or celebrate value-adding rework
in design. Too many Agilists confuse the sin of following a plan with
planning itself. In Scrum, the Product Owner does ongoing up-front
planning, and the team and Product Owner together order the Product
Backlog decisions to optimize revenue and to reduce cost – very much like
a Lean decision structure matrix (Austin et al 1999). In addition, the team
does design at the beginning of each Sprint and may do task sequencing
before starting to work. However, few Agile practices bring mature domain
design knowledge forward in a way that reduces the cost and effort of later
design decisions, or that simply makes them unnecessary.

Much of the challenging part of design lies in partitioning a system
into modules and collections of related APIs. That is exactly the problem
that up-front architecture addresses. While popular Agile culture holds
out hope that such partitioning and groupings can easily be re-factored
into shape, few contemporary re-factoring approaches rise to the occasion.
Most re-factoring approaches are designed to work within one of these
partitioned subsystems or within a class hierarchy that reflects such a
grouping of APIs: they don’t deal with the more complex problem of
moving an API from one neighborhood to another. That’s hard work.

Architecture doesn’t eliminate this hard work but can greatly reduce
the need for it. Contrary to being hard, architecture can actually make it
easier to deal with change. When the world shifts and technology, law or
business cause wrinkles in a domain, you either have to start over (which
isn’t always a bad idea) or do the hard work of restructuring the software.
And that is hard work. Agile doesn’t mean easy, and it offers no promises:
only a set of values that focused, dedicated team members can employ
as they face a new situation every day. Architecture takes work, too, and
requires foresight (obviously), courage, and commitment – commitment
that may be too much for timid developers. But it becomes hard work
only because we choose to view it that way, and becomes futile work only
because we do it in the absence of Lean principles, or because we are too

1 Thanks to Lars Fogtmann Sønderskov.

Stakeholder Engagement 41

used to instant gratification. Facing change without architectural support is
even harder work. Short-term responsiveness is important, too, and that’s
the Agile side of this book. There is no contradiction in saying that Lean
investment and Agile responsiveness go hand in hand.

That’s the technical side of the story. There is also an organizational side
to Lean and Agile, which usually dominates the industry buzz around the
buzzwords. Lean strives to eliminate waste, which goes by the Japanese
word muda () in the Toyota Way. There are many causes of waste,
including discovering mistakes later rather than sooner, overproduction,
and waiting. If one person has to wait and is idle until a supplier delivers
needed information or materials, it is a wasted opportunity to move things
quickly along the value stream. For Lean architecture and Agile production
to work, we must engage the right stakeholders and ensure that the process
keeps them on the same page, optimizing value to the end user.

3.2 The Key Stakeholders

We identify five major stakeholder areas:

■ end users,
■ the business,
■ customers,
■ domain experts, and
■ developers.

You might be tempted to partition these roles by process phases. How-
ever, Agile’s emphasis on feedback and Lean’s emphasis on consistency
suggests another organization: that these roles are more fully present in
every development phase than you find in most software organizations.
We focus on the value stream as a whole rather than on the individual
stovepipes.

This doesn’t mean that everyone must attend every meeting, and it
doesn’t mean that you should force your end users or businesspeople to
write code. It does mean breaking down the traditional organizational
walls that hamper communication between these roles, particularly at
those times of crucial design decisions.

A good development organization is organized around roles that have
a solid place in the lean value stream. In the Organizational Patterns book
(Producer Roles, Coplien and Harrison 2004, pp. 182–183) we discussed
producer roles, supporting roles, and deadbeat roles. You might think that
your organization has no deadbeat roles – until you map out your value
stream.

42 Chapter 3

We probably miss some of your favorite roles in our discussion here.
We discuss the roles that have distinguished contributions to the value
stream, and a few of the key roles that help lubricate the value stream. For
example, user experience people open doors to the end user role. The roles
here should be interpreted broadly: so, for example, ‘‘developer’’ covers
designers, coders, and testers; ‘‘domain expert’’ may cover your notion
of architect, system engineer, and maybe business analyst or internal
consultant; ‘‘business’’ includes sales and marketing and perhaps key
management roles; and so forth.

Since this is a book on architecture you might expect more conscious
focus on a role called ‘‘architect.’’ A true software architect is one who is
a domain expert, who knows how to apply the domain expertise to the
design of a particular system, and who materially participates in imple-
mentation (Architect Controls Product (Coplien and Harrison 2004,
pp. 239–240) and Architect Also Implements (Coplien and Harrison
2004, pp. 254–256). Such an architect can be a valuable asset. We still avoid
that term in this book for three key reasons. First, having a role named
‘‘architect’’ suggests that the people filling that role are the ones responsible
for architecture, when in fact a much broader constituency drives system
design. Second, the word often raises a vision of someone who is too far
removed from the feedback loop of day-to-day coding to be effective. This
drives to a key point of Agile software development, and can be traced back
to the Software Pattern discipline and to Christopher Alexander’s notion
of the architecture as ‘‘master builder’’ rather than ‘‘artistic genius.’’ The
term itself has dubious historic value. As the best-selling architecture critic
Witold Rybczynksi writes in his book The Most Beautiful House in the World,

. . . But who is an architect? For centuries, the difference between mas-
ter masons, journeymen builders, joiners, dilettantes, gifted amateurs,
and architects has been ill defined. The great Renaissance buildings,
for example, were designed by a variety of non-architects. Brunelleschi
was trained as a goldsmith; Michelangelo as a sculptor, Leonardo da
Vinci as a painter, and Alberti as a lawyer; only Bramante, who was
also a painter, had formally studied building. These men are termed
architects because, among other things, they created architecture – a
tautology that explains nothing. (Rybczynski 1989, p. 9)

Third, most valuable contributions of good architects are captured in the
other roles mentioned above: domain experts, the business, and developers.

It is crucial to also have a coordination function, a point person for the
architectural work. There is at least anecdotal evidence that this is the main
job of titled software architects today (Coplien and Devos 2000). While the
architect usually wears this mantle there are many ways to achieve the

Stakeholder Engagement 43

same goal, from self-organization to titled positions. Keep coordination in
mind, but we will not raise it to the stature of a role here. Many roles can
rise to the coordination task on demand.

We don’t separate out system engineering as a separate role. It isn’t
because we find systems engineering boring or useless; it’s more that
few people know what it is any more, and those that do don’t need
much advice. For the purposes of this book, systems engineers can be
viewed as domain experts (which are too commonly called architects) who
can translate architectural idealism into stark reality, or as requirements
engineers who are part of the end user camp. Done right, an architect’s job
looks like great architecture; a coder’s work looks like great craftsmanship;
and a system engineer’s job looks like magic.

Let’s explore the roles.

3.2.1 End Users
End users anchor the value stream. The buck stops there. Their stake in your
system is that it does what they expect it to. By ‘‘expect’’ we don’t mean a
casual wish, but a tacit expectation that goes beyond conscious assumptions
to models that lie partly in the user unconscious. Most customers can
express their wants; some can justify their needs; and when using your
product they can all tell you whether it does what they expect it to. Most
software requirements techniques (and some architecture techniques) start
by asking users what they want or need the system to do, rather than focusing
on what they expect it to do. Too many projects collect lists of potential
features, driven by the business view of what the customer is willing to pay
for (in other words, what the customer wants). Just having a description of
a feature alone doesn’t tell us much about how it will be used or why he or
she will use it (we’ll talk more about the why question in Section 7.3).

We learned a lesson in user expectations from a client of ours. The client
builds noise analysis systems for everything from automobiles to vacuum
cleaners. One thing we learned is that their clients for vacuum cleaners
insist that a good vacuum cleaner make a substantial amount of noise
when on the high setting. For the German market, this is a low roar; for
other markets, it is a high whine. The goal isn’t to minimize noise, even
though it’s possible to make vacuum cleaners very quiet without reducing
their effectiveness.

Our goal, therefore, is usually to meet user expectations. There must
be a compelling business reason behind any other goal – for example, to
break out of a familiar computer interaction paradigm into new designs
that either distinguish us in the market or which make radical enough
improvements in the end user experience that they are willing to change
their expectations. In that case, we have raised their expectations. But even

44 Chapter 3

there, the focus is on expectations; initial end user expectations are only
wants that dissolve in the light of the new interaction paradigm.

One way to uncover expectations is to start a conversation with user
stories and proceed to goal-driven use cases that include scenarios and
user motivations for the functionality. User stories help end users think in a
concrete way, and if we feed back our understanding of their expectations,
we can gain foresight into how they will react if the system were deployed
according to our understanding. If we do that job well we can build a
system that technically meets end user needs.

Once you’ve gotten the conversation started, make it concrete quickly.
One thing Dani Weinberg teaches people, inspired from her experience
with training dogs, is that dogs learn well from timely feedback. They
have difficulty associating delayed feedback with the associated behavior
so they are at best bewildered by your untimely praise or criticism. If you
can turn around a feature quickly at low cost to deliver to the end user
for a test drive, you can concretely calibrate your interpretation of their
expectations. Prototypes can be a good vehicle to elicit the same feedback
at lower cost and in shorter time.

One problem with requirements is that they never anticipate all the
scenarios that the user will conceive. So we need to go deeper than
scenarios and explore the end user’s perception of the system form. This
is called the end user cognitive model, and it has everything to do with
architecture. And it closely relates to what the user expects from a system.
We’ll explore the mechanics of user stories and use cases more in Chapter 7,
but here we’ll help set the context for those practices.

Psyching Out the End Users

Use cases capture user/system interactions that end users can anticipate.
If end users can anticipate every interaction for every possible data value
and input, then the specification is complete. It also makes it unnecessary
to build the system because we’ve delineated every possible input and
every possible answer, and we could just look up the answer in the spec
instead of running the program. Of course, that is a bit absurd. Good
software systems have value because they can, to some degree, handle
the unanticipated. For example, let’s say that my word processor supports
tables, text paragraphs, and figures. One requirements scenario captures
the user/system interactions to move a table within the document. I can
describe the possible scenarios: moving a table from one page to another;
moving the table to a point within a paragraph; moving the table just
between two existing paragraphs; or even moving a table within another
table. The possibilities are endless.

Stakeholder Engagement 45

Instead of depending on an exhaustive compilation of requirements
scenarios alone we instead turn to something that matters even more: the
end user’s cognitive model. Users carry models in their head of the internals
of the program they are using. They trust that the program ‘‘knows’’ about
tables, paragraphs, and figures. The end user trusts the programmer to
have paid attention to the need for white space between the table and any
adjoining paragraphs. These elements of the end user mental model, while
quite static, are useful for reasoning about most possible use case scenarios.

If the program doesn’t have an internal representation of a text para-
graph, of a table and of a figure, then the program must work hard to
present the illusion that it does. Otherwise, the program will endlessly
surprise the end user. This is true even for scenarios that the end user
might not have anticipated while helping the team compile requirements.
Another way of talking about user expectations is to note that, unless
we are designing video games, the end user rarely finds surprises to be
pleasant. Therefore, it is crucial that the system architecture reflect the end
user cognitive model. That helps us design the system so it not only meets
end users anticipated wants and needs, but so it is also resilient when
asked to support an un-anticipated but reasonable scenario.

If we capture this model well, the system and its initial code will
handle most reasonable scenarios as they arise. Users will of course
invent or stumble onto scenarios that the system doesn’t yet handle quite
right – perhaps, for example, creating a table within the table of contents.
As programmers we then need to extend the system to support the new
variation on an existing use case. But the system form is unlikely to
fundamentally change. Such business domains models remain relatively
stable over time.

Feature testing and validation explore the match between the system
behavior and end-user expectations. System tests, usability testing, and an
attentive ear during end-user demos all help. But when we are laying
out the product architecture we want the end user’s cognitive model of
the system. Because the architecture reflects that model, the end user
is a stakeholder in the architecture. In fact, the original goal of object-
orientation was that the code should capture the end user mental model
(we’ll speak more to this in Section 5.3 and Section 8.1). Eliciting that model
is an important part of architecture – in fact, is the key component of an
Agile architecture.

Programmers can have a hard time separating themselves from their
engineering world enough to grasp the end user perspective, and it can be
difficult for end users to objectively introspect about what their internal
world models really are. This is where user experience people bring value:
they are often the key to the stake held by the end user. User experience

46 Chapter 3

people are also trained to recommend interfaces and approaches that, while
natural to end users and their mental models and behaviors, look crazy to a
programmer. (If you don’t believe us, just read Raskin’s book on interaction
design (Raskin 2000)). Among their common tools are prototypes (often
just on paper) to explore the requirements space. Most of this stuff isn’t
rocket science! And you may be doing much of it already.

Don’t Forget Behavior

Yes, of course we still collect use cases, even if they handle only the
most common needs and even if they can’t be exhaustively enumerated.
Software ultimately is a service, not a product, and use case scenarios help
us keep that fact in focus. The more use cases, the better? Well yes, but
moderation is a key virtue here. A team of five to ten people can absorb
about 15 use cases in an annual release, where each use case has a list of
scenarios that grows in number and detail as the business plan requires
and as requirements emerge. A single product can juggle about 240 use
cases at once (Cockburn 2008). It’s easy to go too deep into requirements
too early, because end users may behave differently when faced with a
delivered system than they envision in the abstract. To gather detailed
requirements about ever-changing behaviors is waste, so that’s not Lean.

It’s important to strike a balance between domain modeling (Chapter
5) and behavior modeling (Chapter 7). Behavior has form too (as in the
phrase ‘‘form follows function’’), is part of the end user mental model,
and should be captured in the architecture. In the long term, the domain
structure tends to be more stable than the behaviors we capture in use case
scenarios, and its forms are the cornerstones of a good architecture. Object-
oriented design techniques traditionally have been satisfactory at capturing
the domain model but really bad at capturing the behavioral models.

There’s another good reason to capture use cases: testers are also stake-
holders in the system’s quality and they need something to exercise the
system behavior. In fact, one good way to drive system design is to gather
the domain structure and the system behaviors in parallel and to let both
drive the design. This is called behavior-driven development (BDD, North
2006). Note that this means that the end user, the developer, the tester and
the user experience specialist should be engaged together from very early
in the project. It’s just the Lean Secret again.

Focusing more on form than on function will help drive you in a direction
that supports what users expect. Do that well, and you’ll easily be able to
provide what they say that they want and need.

Stakeholder Engagement 47

The End User Landscape

Many systems have multiple end users and potentially multiple value
streams. Think of a banking system. Simple exercises in object-oriented
design courses often present account classes as the typical design building
blocks and account-holders as the typical users. Yet bank tellers are also
end users of a bank computer system. So are actuaries: the folks who look at
the details of financial transactions inside the bank. So are the loan officers
and the investment staff inside the bank. Does the concept of ‘‘account’’
suit them all?

Identifying such end user communities is crucial to a sound architecture.
Different user communities have different domain models. Derivatives
and commodities are potential domain entities to the investor, but not to
the teller nor to the loan officer. Mortgages are domain entities to the loan
folks but not the investment people. Yet somehow banks seem to run with
a single common underlying domain model. What is it? In most complex
financial system, the basic building blocks are financial transactions: those
become the ‘‘data model.’’ From the user interface, different end users have
the illusion that the system comprises accounts and loans and pork bellies.
We’ll find in Chapter 9 that accounts really fall into a middle ground called
Contexts: stateless collections of related behavior that behave like domain
objects but which are richer in functionality and closer to the end user
than many domain objects are. The Agile world has started to recognize
the need for such user community differentiation, and that realization is
making a comeback in tools like Concept Maps (Patton 2009) – though use
cases have supported such notions all along.

Much of the rest of this book is about learning to identify these layers
and to create an architecture that will allow the most common changes over
time to be encapsulated or handled locally. Object-oriented architecture
isn’t just a matter of ‘‘underline the nouns in the requirements document’’
any more. Before a project can build a resilient architecture, its people must
know enough about the end user communities and their many mental
models that they can form the system around long-term stable concepts of
the business.

3.2.2 The Business
End users are system stakeholders who ultimately want the software to
provide a service to them. The business has a stake in providing that
service to support its ROI and survival. It has a stake in the well-being of
its employees who create those services. The business pays the employees

48 Chapter 3

wages, salary and/or bonuses, and that usually implies making money
from the software. Good software businesses usually have a stake in grow-
ing their customer base and giving good return to investors – which means
that the enterprise will seek a diversity of end users or customers to support
in the market. We usually think of business stake-holding as lying with line
management, sales and marketing, or with the Product Owner in Scrum.

If the business can serve more customers, it both grows its stake in its
customer base and likely increases revenues. Good revenues are one way
to be able to pay employees well; another is to reduce costs. Architecture is
a means to hold down long-term development costs and to accelerate the
rate of revenue generation.

The business itself provides key inputs to the architectural effort that can
hold down cost. One of the most important business decisions is the project
scope. The business owns decisions about product scope. Nonetheless,
these must be informed decisions. Scoping has to balance the expectations
of all customers and users against financial objectives. For example: should
the scope be the union of the entire market’s expectations, or should the
business focus on the 20% of the market where 80% of the revenues lie?
But scope also has to look to the supply side. For example, the product
scope can’t take development into an area that depends on technology that
won’t yet be mature in the product’s lifetime (are we building electric cars?
Business forecast software that uses artificial intelligence?) Such insights
come from domain experts and developers.

Just who is ‘‘the business’’? The board of directors, executive manage-
ment, business management, marketing, and sales are all key roles in this
broad view of the business. Again, you probably don’t need all of these
people at all meetings. But if you are discussing scope, or the what-the-
system-does part of the architecture, invite selected representatives of these
areas to the table.

The business may also hold down costs by making a buy-versus-build
decision. Such decisions of course have broad and lasting influence on the
architecture. Such decisions should be informed by customers and end
users, who desire selected standards, and by domain experts who can
advise the business on the feasibility of integrating third-party software.
And don’t forget the developers, who actually have to do the work of
integrating that software, and the testers, who have the burden of testing
a system that contains a potential ‘‘black box.’’

A Special Note for Managers

The Scrum framework is a risk-reduction framework, or a framework to
optimize ROI, with no role named manager. The ScrumMaster has many

Stakeholder Engagement 49

of the characteristics of a good servant-leader manager, and the Product
Owner has the business savvy and the command-style attributes of a good
Product Manager while lacking all of that role’s control-style attributes.
Scrum’s roles come directly from the Chief Engineer and workers in
Lean: the Product Owner and ScrumMaster reflect a splitting of the Chief
Engineer role in two. Most of the entries for manager as indexed in some
Agile books are about how managers resist and challenge XP (Auer and
Miller 2002; Cohn 2010), while others thoughtfully talk about manager
rights and responsibilities (Jeffries, Anderson and Hendrickson 2001).
What place do managers have in Lean architecture and Agile deployment?

Remember that two keystones of Agile are self-organization and feed-
back. For your team to be successful, you as a manager should use the
influence and power of your position to help make that happen. One of
the most important jobs of line management is to remove impediments
that frustrate the team or that slow the team’s progress. A line manager’s
attitude can make or break the esprit de corps of a team. That is worth
more than any methodology or tool.

A good way to think about managers in an Agile context is as
members of a team whose product is the organization (Greening 2010).
As such, managers aren’t preoccupied with the production process for the
enterprise product; instead, they influence that process by putting the right
organization in place. Good organizations support effective communica-
tion through group autonomy, collocation, and group functions. Further,
there are close links between the architecture and organizational structure
as commonly acknowledged in Conway’s Law ((Conway 1968) – see also
Section 5.2.2). While teams may locally be self-organizing, the higher-level
organizational structure is often in the hands of the managers. That makes
managers de facto über-architects: a responsibility not to be taken lightly.

While developers should set their horizons on end users who care
about the product, managers can focus on customers. This helps free the
development team from ‘‘pure business’’ issues that require the experience,
insight, and responsibility that is more typically lodged with managers than
with developers. Because most software these days is sold as a commodity,
customers are more concerned with revenue streams and delivery dates
than the actual product itself. That means that they may be more interested
in the process than the product (as we discuss further in the following
section). Managers are a good entry point for these concerns – much better
than the development team. The organizational structure is also the cradle
of the development process that emerges from it; see for example Swieringa
and Wierdsma (1992) and Coplien and Harrison (2004, pp. 309–311).

All that said, don’t forget: everybody, all together, from early on.

50 Chapter 3

3.2.3 Customers
Customer is an almost emotive term. To not sign up to be customer-driven
or to strive for customer satisfaction is to be a heathen and to be ‘‘not a
team player.’’ If we look beyond the mythical associations of the terms we
find that it’s useful to separate the customer role from the end user role.
Simply put: end users relate to products and services, while customers
relate more to the development process.

. . . As Contrasted with End Users

Customers and end users are interesting links in the value stream. We find
the term ‘‘customer’’ featured both in the Agile Manifesto and in much
of the original Scrum vocabulary. Yet the Agile Manifesto says nothing
about the end user, and we don’t find either role formally in today’s Scrum
framework!

Customer and end users are very different stakeholders. Of the two,
the end users’ stake is relatively simple by comparison. They seek service
from the software you are developing; you create that value for them. The
end-user value to the development organization is that they are usually
the source of revenues that ultimately feed your team members. It’s a good
deal for end users if your software supports services that increase their
quality of life.

The customer is essentially a middleman. In general terms, customers
are not consumers of the service that your software provides; they treat
your software as a commodity that passes through their systems the same
way that gold in a Japanese martini passes through the digestive system
of its consumer. It may come out the other end in different packaging,
but it is still the same product. When engaging such customers, consider
their stake in opportunistically developing products for which there are
yet no end users. While all stakeholders want to reduce risk, customers in
this position are particularly averse to risk. They are much more interested
in delivery times and in your development costs (because those become
their costs) than they are in functionality. Therefore, the customer has a larger
stake in your development process than in the service that your software provides.
You may be engaging customers more in the area of process improvement
than in development enactment. It is important to accord such activities
a place in your enterprise using retrospectives – and here, retrospective
means a serious activity that encompasses business scope and issues of
trust. What passes for a retrospective in the three-hour ‘‘check-ups’’ at the
end-of-sprint is inadequate. See (Kerth 2001) for more on retrospectives.

Customers have at least one other key stake-holding relationship to the
architecture, and that relates to the market segments that they serve. In

Stakeholder Engagement 51

general, the more customers the merrier: customers are a path to markets
and therefore to revenue (value) streams. However, different customers
often represent different constituencies and bring their own power of
negotiation or market leverage to the negotiating table. If customers want
to distinguish themselves from their competition, they will want their own
configuration of your product. As Grandpa Harry used to say, one size
does not fit all. Such configurations may extend beyond simple algorithms
to variations on the system form: its architecture. A good architecture
can be a tool that helps the Business cater to the needs of individual
customers and market segments by supporting plug-and-play substitution
of system modules. You can best understand how to manage change
if you understand what doesn’t change. In other words, you want to
constructively constrain change and the sites of system variation. The
stable part and changing part of the system are the yin and yang of its
architecture.

Of course, many combinations of customer and end user are possible.
They are sometimes one and the same. Sometimes you have the luxury of
working directly with end users, achieving the ultimate Agile goal of short
feedback loops that minimize requirements misunderstandings.

It is common that a Scrum team delivers to another software team
developing code in which its own code is embedded. These projects are
challenging to run in an Agile way. It is rare that such a team has or
even can have meaningful discussions with end users. If your software
has repercussions for end users (and what software doesn’t?), then your
own customer is likely to introduce delay that makes it difficult to receive
timely customer feedback before starting your next Sprint. Testing, and,
in general, most notions of ‘‘done,’’ become difficult. In these situations it
is much better to extend the scope of ‘‘done’’ to include such customers and to
effectively enlarge the scope of development to engage the party as a development
partner rather than as a customer.

Sometimes you have customers who yet have no end users because they
are striving to develop a market, trying to develop a service that they hope
will sell. In an Agile context, be wary of the possibility that your customer
will look to you as a vendor to be the source of the requirements! Take such
opportunities gladly and work with your end-user constituency to shape
their expectations together.

Other times you yourself are both the developer and the end user, such
as might occur when developing tools that support the development team.
That’s great! We encourage you to continue the discipline of separating
your customer role from your developer role. Dave Byers relates:

Because in the developer role you’re trying to get away with doing
as little as possible, but in the customer/user role you want as much

52 Chapter 3

done as possible. Separate the two and it’s possible to find a decent
balance. Don’t separate them and chances are you’ll drift too far to
one or the other. (Byers 2008a)

Indeed, the possibilities are endless. Use common sense, guided but not
constrained by Agile and Lean principles.

‘‘Customers’’ in the Value Stream

Sometimes our ‘‘customers’’ are just politically or organizationally separate
entities on the production side of the value stream. If you build framework
software and sell it to a company that embeds it in their product, then there
are no real end users of your product in your customer. Your end users
are on the other side of your customer – and that can cause a break in the
value stream.

If you are in this situation, look carefully at the interfaces between the
organizations and look for waste, delay, inconsistency, or boom-and-bust
production cycles. If you find such problems, then Lean has some answers
for you. (If you don’t find such problems, then that’s great! Like Grandpa
Harry said: If it ain’t broke don’t fix it.)

Lean’s main answer to these problems is to integrate both parties more
fully into a single value stream. Remove obstacles to feedback between the
teams. Leverage standards as a supplement to communication, and as a
way of reducing changes in dependencies.

Remember that the same principle applies if you are taking software
from another vendor and embedding it in your project. Try to close the
gap. Toyota did this when they found they needed a new battery for
their hybrid car. They didn’t have the expertise to build one in-house
and couldn’t find one from any supplier. They solved the problem by
partnering with Matsushita to jointly design a battery uniquely suited to
the design of the Prius (Liker 2004, pp. 208–209).

3.2.4 Domain Experts

You need the space of continuity to have the confidence not to be afraid
of revolution.

Freeman Dyson, quoted in The Clock of the Long Now, p. 162.

Domain experts are usually the grey-haired folks in the organization who
know stuff. Domain experts are often the most direct and most explicit
source of insight and advice on how to structure a new system. Most
new systems in a domain look – from the perspective of form – much like
previous systems in the same domain.

Stakeholder Engagement 53

It’s important to understand that everyone in an organization is probably
an expert on something; otherwise, they wouldn’t be there. Software
development is rarely a matter of having enough muscle to get the job done,
but rather of having the right skill sets present. It’s about having diversity
of skill sets, not just that one can overtake the market with Java muscle.

On the other hand, the folks commonly called domain experts have a
special role in architecture. Over the years they have integrated the perspectives
of multiple end user communities and other stakeholders into the forms that
underlie the best systems. From the perspective of Agile and of engaging the
people who use your software, these are crucial insights.

Such knowledge is a priceless asset. Consider the alternative. With no
knowledge of the best long-term structure of the system, designers would
have to start with first principles – end user domain models at best, but
more likely use cases – and try to derive the objects from those. It becomes
more difficult if the team must deal with use cases from several different
kinds of end users (e.g., both Savings Account Holders and actuaries for
a bank), and becomes even more difficult if the scope covers multiple
clients or customers. The knowledge of the form suitable to such a complex
landscape assimilates over years or decades, not over sprints or months. If
you have your domain experts handy, they can relate the forms that they
have already integrated, and in any case can point out areas that have been
particularly challenging in the past.

Domain expert engagement is to architecture as end user engagement
is to feature development. You should find that end users and domain
experts are your most treasured contacts in a Lean and Agile project. It is
difficult to establish good working relationships with both of these roles
(with end users because of organizational boundaries and with domain
experts because of their scarcity), but make the extra effort. It’s worth it.

No Ivory Tower Architects

Domain experts often bear the title of Architect. In the Organizational
Patterns book (Coplien and Harrison 2004) we find patterns such as
Architect Controls Product and Architect Also Implements, which
employ the title ‘‘architect’’ exactly in this sense. Both patterns suggest that
architectural principles and domain expertise are embodied in the title.

Today, we prefer the term ‘‘domain expert’’ more and more and the
term ‘‘architect’’ less and less. The reason? In practice, ‘‘architect’’ isn’t a
very distinguishing title. Interaction designers and coders have as much or
more influence on the overall form of the system – its architecture – as titled
architects do. In an Agile framework we value everybody’s contribution to
the architecture, and to have a titled ‘‘architect’’ can actually disempower
other stakeholders with deep insights. Differentiating the role of ‘‘domain

54 Chapter 3

expert’’ along the lines of expertise and experience, instead of along the lines
of contribution to product foundations, better captures the stake-holding
relationships.

One important role of traditional, titled architects is to coordinate devel-
opment activities, focusing on late analysis and early design activities in
particular. Domain experts often don’t do that. In fact, titled architects are
often not the great minds of design that we sometimes hold them to be,
but are more like primary contractors in the construction field (Coplien
and Devos 2000). Every organization should attend to this function as
needed: whether it falls into the realm of the architect, a line manager, the
ScrumMaster, or technical lead. A leader can lead and a coordinator can
coordinate without disrupting self-organization, and the best ones actually
sew the seeds of self-organization. Such self-organization is crucial to Agile
execution.

Experts in Both Problem and Solution Domains

Don’t forget solution domain experts! It’s easy to get too caught up in value
stream thinking that is preoccupied with tracing all business decisions to the
end user as stakeholder. The business itself is also a stakeholder, attending
to ROI. It is perhaps easiest to forget that developers are stakeholders, too.
Of course, developers support ROI with their contribution to the value
stream, and because that’s the source of their income, they’re stakeholders
in the architecture. If we look at developers from a more human perspective,
we realize that enterprises exist to provide not only products and services to
the market but also employment to the community. We support developer-
stakeholders, our solution domain experts, with work aids that not only
make them more effective, but which make work life more enjoyable.
More importantly, we want to tap their insights about how to improve the
enterprise, the product, and its architecture.

Innovation in the solution domain goes hand-in-hand with long-term
experience of solution domain experts. For example, a good object-oriented
expert can tell you both where object orientation will give you benefits and
where it won’t. (In fact, a good rule of thumb is to trust someone as an
expert only if they are good at telling a balanced story. An advocate is not
always an expert, and an expert is not always an advocate.) You need good
dialog on the team between the innovators (which can be any role on the
team) and the solution domain experts.

Keep your architecture team (well, your team) balanced so that both
problem domain experts and solution domain experts have an equal
say. One problem with stovepipe development is that needed dialog
between these two perspectives too easily becomes a conflict, because the
first mover often over-constrains the other. It is often a problem for a

Stakeholder Engagement 55

business to be driven too much by technological innovation, but it is even
more problematic to be driven by the MBAs. To read a depressing case
study about how this imbalance can go wrong, read Richard Gabriel’s
post-mortem of Lisp innovator Lucid (Gabriel 1998, pp. 175–230).

Of course, we know many classic criteria must be met for an architecture
team, or any team, to succeed. Kruchten writes about success factors
for architecture-focused teams in (Kruchten 1999). He emphasizes the
need for leadership on these teams. He also notes, very importantly,
that the architecture team is a team among other teams: not a group of
elitist appointees, or imminent retirees, but a small, vibrant, committed
group whose schedule is tied to that of other teams. He warns against
confusing a tool with the architecture (individuals and interactions over
processes and tools). And of course, he recognizes the need to communicate,
communicate, communicate.

Everybody, all together, from early on.

3.2.5 Developers and Testers
Developers are where the rubber meets the road. Their main job in archi-
tecture is often to rein in the grand visions of the business and architects
with grounded domain expertise, both from the business and solution
domains. As in Scrum, the developers should own the development
estimates – after all, they’re the ones who will do the actual work of imple-
menting. As we mentioned before, it’s even better if the architects also
implement (Architect Also Implements, Coplien and Harrison 2004, pp.
254–256) – or, turning it the other way in terms of this book’s terminology,
if at least some of the developers also have deep domain expertise.

We use the collective term developer in this chapter instead of the
individual task labels of designer, coder, and maintainer. To separate these
roles is to encourage handoffs that challenge the Lean principles because
organizations too often implement these separate roles in separate people.
Such distinction can breed a lack of commitment or, worse, can lead to low
morale, especially in the people filling the last two roles. Designers should
bear the responsibility of implementing their plans, and coders should bear
the responsibility for the business values of their creations. We fold these
perspectives into the developer role. Developers may or may not develop
documentation themselves, but they certainly have a strong stake in the
documentation of the code they write (see Mercenary Analyst, Coplien
and Harrison 2004, pp. 92–95).

Developers are the prime oracles of technical feasibility. They are the
primary solution domain experts. They should be active experts. For the
tough questions, opinion alone isn’t well informed enough to make long-
term business or architecture decisions; it’s important to gather empirical

56 Chapter 3

insights. This is another Lean principle, which in Japanese is called genchi
genbutsu (現地現物): go look and see for yourself. Developers can help by
building prototypes that compare and contrast architectural alternatives
that are up for discussion. At PatientKeeper in Massachusetts, the Scrum
Product Owners might spend months building prototypes and workflow
models to refine their understanding of the design space. Developers are
taxed to support them with prototyping tools so they can build and deliver
working prototypes as requirements oracles.

Remember that developers are the primary channels of interaction
between teams. If you believe Conway’s Law, which says that the team
structure mirrors the architecture, then you can probably believe that the
interaction between parts of your architecture will be only as effective as
the interactions between the team members representing those parts of the
architecture. As you frame out the form of your system, make sure that
the stakeholders for the parts – at the level of the coders – negotiate the
interfaces through which they will interact. Much of this negotiation will
of course involve domain experts.

Developers and testers should be friends. While every serious system
needs some acceptance or system testers who write double-blind tests,
you should have ongoing testing support during development. You even
need that at the system level. For such testing, the testers need to know
requirements at least as well as the developers, so they’re likely to be invited
to a lot of the same meetings as developers. Everybody, all together, from
early on.

Even though developers and testers should be friends, at least some of
them should play a game of ‘‘hide and seek.’’ The developer and tester
can have a friendly meeting with the businesspeople to agree on the
requirements, and then they go their separate ways. The tester codes up
tests for the new feature while the developer implements the feature in the
current architecture. The developers strive to implement the feature exactly
as they come to understand it, going back to the business for clarification
if necessary. The testers strive to test the feature as they understand it,
also asking for clarification when they need it. After one or two days of
work, they come together to see if their perspectives meet up. Grandpa
Harry used to say that two heads are better than one. Start by having two
sharp thinkers develop their interpretation independently; this doubles the
opportunity to discover latent misunderstandings. That’s the ‘‘hiding’’ part
of hide-and-seek. Working independently avoids groupthink, and avoids
one personality overpowering the other with arguments that things must be
thus-and-so (Janis 1971). Then, having ‘‘found’’ each other, reason together
(again, with the business if necessary) to clarify mismatches. Not only does
this approach increase the chance of uncovering requirements problems,
but it is also a weak form of pipelining, or parallelism, that shortens

Stakeholder Engagement 57

feedback cycles. This is effectively what Behavior-Driven Development
(BDD) does (North 2006; Chelimsky et al 2010).

As for testers, there’s an old saw that architecture defines your test points.
Testers have a stake in the architecture that it be testable. Hardware
designers have become good at something called DFT, or ‘‘design for
testability’’ (Wu and Wen 2006). Most software people haven’t come quite
that far, but some software testers have more insights and instincts in
this area than most of the rest of us do. Use testers’ insight to create
architectural APIs that support your test program. For example, having a
well-delineated GUI API makes it feasible to drive the program with an
ersatz GUI that can simulate end users (e.g., by re-playing interactions from
real field applications). Such an API can be one foundation for automated
system testing. The decision to create this interface, and where to place it,
is an architectural one, though testing needs drive it.

Last but certainly not least are usability testers. Usability testing comes
rather early in development, after use cases have been firmed up but before
coding begins. The architecture in most Agile systems is driven by the end
user’s mental model, so if you wait to test your interface until after you’ve
completed your architecture and filled it out with running code, you may
have a mountain of rework to do. Here, in particular, is where the early on
of the Lean Secret is crucial. You can support user experience testing with
prototypes or with simple hard-copy mock-ups of the anticipated screen
designs. Usability testing can validate whether the team has captured the
end user mental models properly: a crucial test of the architecture. We talk
a little bit more about usability testing in Section 7.8.

3.3 Process Elements of Stakeholder Engagement

Your longstanding development process is in place, and you’re wondering
what an Agile process should look like. Organizations usually conceive
their development processes as following one (or both) of two patterns.
The first alternative is to exhaustively cover the stages of development and
their sequencing. The second is to enumerate the roles and to specify each
one’s tasks. A total ordering of tasks can over-constrain self-organization,
and a task organization alone can become arbitrary if it’s detached from
the value chain. A generic framework like RUP (Rational Unified Process)
that tries to delineate all the roles in general has difficulty mapping onto
domain-specific roles and processes, and it’s also difficult to map these
roles onto the value stream.

In this book, we discuss only the most basic notions of software process as
they relate to Lean architecture and Agile production. This is a book about
architecture and implementation. You might ask: Where does architecture

58 Chapter 3

start and end? To answer that, we need to answer: What is architecture?
Architecture isn’t a sub-process, but a product of a process – a process
called design. Design is the act of solving a problem. Viewed broadly, and
a bit tongue-in-cheek, we might say that there are only four processes in
software development: analysis (understanding the need); design (solving
the problem); verification (usually, testing); and delivery (which may
include engineering, installation, shipping and deployment). This means
that the time scope of architecture is broad – a long now.

A pithy but adjustable problem statement (Chapter 4) makes a great
project compass. To do a good job analyzing an extensive, complex market
takes time. Getting everyone in the same room shortens feedback loops.
If you can’t get the stakeholders in the same room, minimize the number
of communication hops between them (see the pattern Responsibilities
Engage in Coplien and Harrison 2004, pp. 209–211). We care more about
how roles connect to the value stream (everyone focused on the product as
the goal) than to their place in the process (e.g., to have marketing people
focus on feeding analysts who feed architects who feed designers who feed
developers who feed testers) or to how their responsibilities fit together
into a comprehensive set of tasks (as in RUP).

You can find the stakeholders: the end users, the business, customers,
domain experts, and developers in just about every enterprise that builds
something for someone else. Some traditional software development pro-
cesses translate well to an Agile and Lean world, but others merit special
attention. So, with a light touch this section offers some rules of thumb on
the process.

3.3.1 Getting Started
The vision and problem statement come very early in development – often
even before you have customers. Once the vision is in place, use your
marketing people to extract knowledge from the market, and your domain
experts to extract knowledge from the business world and technology
sector. This knowledge can prepare both the business and the development
community to shape their understanding of the domain and to start to
understand the architectural forms.

If this is a new project, consider the organizational patterns that tie
together the structures of your domain, your market, and the geographic
distribution of your development team. (Here, ‘‘geographic distribution’’
includes separations as small as one building away or more than 50
meters distant. Don’t underestimate the power of space!) In particular,
Conway’s Law (Coplien and Harrison 2004, pp. 192–193) and the related
patterns Organization Follows Location (Coplien and Harrison 2004,
pp. 194–196) and Organization Follows Market (Coplien and Harrison

Stakeholder Engagement 59

2004, pp. 197–198) are major considerations in organizing your teams.
We’ll cover Conway’s Law more in Section 5.2.

We have heard several conference talks on software architecture that
start with a claim such as, ‘‘To get started on architecture, first get your
requirements in hand.’’ It is true that we need to understand end user
requirements if we are to deliver value to them; we dedicate Chapter 7,
Chapter 8, and Chapter 9 to that topic. But the foundations of system
structure lie elsewhere. The other side of the same modeling coin is
domain expertise. Think of domain expertise as a broadening of the end
user mental model into the realms of all stakeholders taken together. Expert
developers learn over time what the fundamental building blocks of a given
system should be. This is where customer concerns – as opposed to end
user concerns – weigh most heavily. Other stakeholders hold important
perspectives that are radically different from those of the end user. For
example, checking Account Holders think that banking software comprises
a ledger that mirrors the entries in their own checkbooks. However, a bank
auditor chooses to view that account as a process over an audit trail in
a transaction log. Both of these are real; which of these wins out as the
systems foundation is a function of many Agile concerns, particularly ease
of use, and frequency and type of changes to system functionality.

Those models balance enough generality to accommodate a wide vari-
ety of business scenarios with enough concreteness to provide a shared
vocabulary for all stakeholders. Such care for the end user perspective on
architecture, combined with its concreteness, take us from the problem
definition one step closer to a delivered system. Of course, in real devel-
opment we work on the problem definition, architecture, and use cases
in parallel; however, from a conceptual perspective, architecture and its
articulation provides a vocabulary and foundation for the later concerns
with what the system does. So, guess what: everybody, all together, from early
on rules yet again.

If this is a new project, start small. Great projects grow from small projects
that work. Have your developers work with analysts to explore the domain
through prototyping. Once you have a vision of where you’re headed, put
together one or two teams to frame out the architecture and to demonstrate
rudimentary functionality. Here, team means three to seven people. Aim
for an early success and for a firm foundation that will support the product
throughout its lifetime. The primary consideration should be on supporting
change in the long term, being particularly attentive to creating effective
feedback loops. If you can respond to change, you can improve the value
stream. The second consideration is to build your process around the value
stream. Strong domain knowledge, and its articulation in an architectural
framework, is one of the best things you can do to support change and to
draw attention to the value stream.

60 Chapter 3

3.3.2 Customer Engagement
Your thoughts will soon turn to delivering features. We’ll emphasize a
previous point again: focus on user expectations rather than just wants
or your perception of their needs. User experience people are experts in
extracting (and anticipating) user expectations. And a good need elicitation
process may change expectations – on both sides of the table.

It is usually important to study end users and even customers in their
native habitat. Don’t bring them into your office, but go to theirs. It doesn’t
matter whether your office has all the touches of the best interior decorator
in town, or whether it’s just a nerd’s paradise – it just can’t replace the
client’s home base as an environment to gain domain knowledge and to
learn about the context in which requirements arise.

To say this goes against the popular practice of on-site customer. Recent
studies have found that on-site customers can in fact compound the
requirements process by creating problems of trust (Martin, Biddle, and
Noble 2004; Martin 2004). On top of that is the more obvious problem of
missing key contextual cues that arise in the environment. Our colleague
Diana Velasco tells of a site visit where the client was describing the
process they used but failed to mention the sticky notes posted around the
border of the computer screen. By watching how they actually worked,
Diana also discovered heavy dependence on a ‘‘crib sheet’’ notebook that
everyone kept as a guide to navigating the screen command structures.
These are crucial components of the developer world and are crucial to
system architecture. They are best discovered by having the architects
spend time in the end user environment – another powerful form of Lean’s
principle of genchi genbutsu, or ‘‘go look and see for yourself.’’

Beyer and Holtzblatt’s book Contextual Design (Beyer and Holtzblatt
1998) offers a wealth of techniques for exploring and capturing end-user
mental models. Be selective in the tools you adopt from this and other
sources. Use these tools on site visits to garner insight both for architecture
and use cases.

As described in Section 3.2.1, you want to actively elicit feedback from
end users through short development cycles or by using prototypes and
models during analysis. A good feedback cycle has the appearance of
causing problems. It will cause emergent and latent requirements to
surface. That means rework: the value of prototypes is that they push this
rework back into analysis, where it has more value because it potentially
lowers the long-term cost. And most important, good end user engagement
changes end user expectations. Good feedback loops that are grounded in
reality give customers the opportunity to reflect on what they’re asking
for. If your customer changes their expectations in the process, you’ve
both learned something. Embracing change doesn’t just mean reacting to

Stakeholder Engagement 61

it: it means providing the catalysts that accelerate it, and then responding
appropriately. Respond with thought to expectations rather than reacting
in blind servitude to need.

3.4 The Network of Stakeholders:
Trimming Wasted Time

Now that we have covered the roles, we come to the heart of the matter.
There is nothing particularly Lean or Agile about the roles themselves.
What is important is how they work together. Here we come back to the
Lean Secret: everybody, all together, from early on.

3.4.1 Stovepipe Versus Swarm
Old-style software development is patterned after the industrial assembly-
line models of the Henry Ford era. In a simple, old-fashioned assembly line,
workers interact directly only with the people in the adjacent station on the
line. Worse yet, they may not even interact with the people, but may focus
exclusively on the artifact and on their task of reshaping it or attaching
something to it that adds value to the product. In manufacturing one can
push this independence all the way back into the design process, because
even designers can count on the laws of physics holding for the parts they
design and how they will fit together and hold up in deployment. The
development process is divided up into stovepipes: independent spheres
of influence lined up side-by-side to create a product piecemeal.

Software has no equivalent to the laws of physics. Alistair Cockburn
likens software construction to group poetry writing. It requires many
different talents, ranging from knowledge of the business domain to
good programming skills to keen insights into ergonomics and interaction
design. What’s worse, these skill sets can’t easily be separated into process
steps that can be done one at a time. And even worse, most of these skill
sets drive some aspect of the basic system form: its architecture. If you
follow that chain of dependencies, we arrive to the conclusion that we need
everybody, all together, from early on.

Table 3-1 summarizes stakeholder relationships discussed earlier in this
chapter. If we had drawn such a diagram for a manufacturing assembly
line, each role might have a direct dependency only on the one immediately
preceding it in the process. But in software, there are essential, ongoing
design decision dependencies that imply an almost fully connected network
of interactions between roles.

Many software organizations handle these dependencies more or less
one at a time as the need arises. One role might perceive the need to interact

62 Chapter 3

Table 3-1 Stakeholder relationships.

End User The
Business

Customers Domain
Experts

Developers
and Testers

End User
Feature
priorities,
scope

Purchase
conve-
nience

Product/
feature
feasibility

Quality and
proper
functionality

The
Business

Feasibility Create
standards

Process
require-
ments

Feasibility Source of
revenue

Customers A market Products
and
services

Create
standards

Compliance
with standards

Source of
revenue

Domain
Experts

Range of
product
variation

Workplace
well-being

Need for
standards

Domain
synergies and
conflicts

Constraints on
technology

Developers
and
Testers

Requirement
Ccarification

Workplace
well-being

Advice on
delivery
process

Guidance,
APIs,
poka-yoke

Clarification of
how existing
code works

Read down the columns to see what the roles contribute to the value stream; rows indicate the roles to
whom the value is provided.

with another and, believing in individuals and interactions over processes
and tools, will do a good deed for the day by initiating a communication.
There may be many more feedback links to reach the person in the value
stream who can deal with the problem. Furthermore, the handoffs waste
time and can at best optimize only locally. If the architect is sitting at his
or her desk writing the Big Architecture Document, and if he or she needs
the insight of the interaction designer before proceeding, too often the
information request must go ‘‘through channels.’’

Such interactions often draw many non-producer roles into the process,
and that puts the architects into a wait state. If the architect is waiting, so are
the GUI designers, the coders, the customers, and the end users. In the very
best case, the answer will come back to the architect in days or weeks and
is still a useful piece of information that hasn’t been invalidated by changes
in the market, standards, technology, or development team staffing. More
typically, the response raises as many questions as it provides answers
(knowing the interaction designer’s recommendation, do we need to ask
the coder if we can implement it?). Unfortunately, in most cases the
architect assumes premises or makes guesses simply because it would take
too much time to clarify the details. And that means that when the Big
Architecture Document reaches the interaction designer and coder, there

Stakeholder Engagement 63

will be much wailing and gnashing of teeth – and another big cycle of
rework and waste (Figure 3-1).

So by trying to do the right thing in an assembly-line organization, an
architect will cause delay. By failing to do the right thing but instead
taking all the decisions upon himself or herself, the architect incurs even
more delay. This is why architecture development takes months or years in
linearly organized complex projects. (These are called ‘‘NASA-type phased
program planning (PPP) systems’’ in (Takeuchi and Nonaka 1986).) It isn’t
that architecture is so much work; it’s that everybody spends so much time waiting
while E-mails sit languishing in in-boxes, while architects write architecture
documents, or unread memos sit awaiting review (Figure 3-1).

A good team that develops relationships between the roles – relation-
ships that correspond to the dependencies between stakeholders – can trim
the architecture effort from months down to days or weeks.

Organize more like an insect swarm rather than as stovepipes. We’re
writing this chapter from the middle of the Swedish Northwoods. Yester-
day we took a walk in the forest and passed several anthills. The largest one
was more than a meter high and more than two meters in diameter, and
every millimeter of its surface was alive with scurrying ants. We couldn’t
find a single project manager among them, nor a single process description.
And we didn’t see anyone in an architectural wait state.

If you’re using Scrum, try to fit your architecture exercise into a single
Sprint. Who is the architecture team (Kruchten 1999)? It’s the cross-
functional Scrum team. If you’re in a multi-team Scrum project, you’ll
need input from multiple teams.

Time to write
a memo

Getting
time to read
the memo

Waiting for a
scheduled review

meeting

Everybody, all
at once, early

on

Figure 3-1 Stovepipe versus swarm.

64 Chapter 3

Your team members should be collocated so they can respond to ques-
tions in seconds rather than hours, days, or weeks. What does ‘‘team’’
mean here? It comprises at least those roles described in this chapter. Too
often, Agile initiatives limit Agile principles and practices to developers,
perhaps with a token on-site customer thrown in. Scrutinizing roles and
their stake-holding relationships more carefully shows that things are more
complicated than that.

3.4.2 The First Thing You Build

Even in a game that rewards distrust, time teaches the players the value of
cooperation, however guarded they may be.

The Clock of the Long Now, p. 123.

Brad Appleton is an old colleague of mine from the Pattern Community
and is a long-time respected person of influence at Motorola. His E-mail
byline has consistently said for years: ‘‘The first thing you build is trust.’’

Jerry Weinberg tells a story of a company where a highly placed, powerful
manager issued an urgent request for new computing equipment. The
requirements were a little bit sketchy, but he did insist that ‘‘the cabinets
had to be blue.’’ His subordinates, and purchasing, and others, scurried
around trying to decode this supposedly mysterious message. ‘‘Blue! Does
he mean to buy from ‘big Blue’ (IBM)?’’ ‘‘Does he mean that he wants it
the same color as the other equipment? But some of it isn’t blue!’’ Someone
finally got the nerve to ask him (whether it was actually before or after the
equipment arrived, I don’t remember) and he said, ‘‘No, blue is my wife’s
favorite color, and she thought that the new computers should be blue.’’

One exercise in Lean is called ‘‘ask five times.’’ If someone makes an
unclear or unexpected claim, ask him or her about it. More often than not
you’ll get another unexpected claim. Within about five exchanges you’ll
come to the core of it. Why didn’t anyone ask the executive why he wanted
blue? It was perhaps out of fear of being an idiot for not knowing the
answer. Or perhaps it was out of fear of potentially embarrassing the boss
in public. There wasn’t enough trust in the organization to clarify the
requirements.

Jerry talks about egoless development teams – a commonly misunder-
stood phrase that simply means that you put your personal stake in
perspective so you can defer to the team’s stake as a whole. We’ve all heard
the saw: ‘‘There are no stupid questions here,’’ but we are not always good
at following it. We should be. An Agile team is a team of trust that can ask
such questions openly.

Stakeholder Engagement 65

3.4.3 Keep the Team Together
As stakeholders, team members have expectations, too. In addition to their
value stream expectations, they come to expect certain abilities, reactions,
and ways of working from each other. That includes the team’s focus on
kaizen, or continuous improvement. Such exchanges should be informal
matters of habit rather than formalisms of a rigorous process. That means
that these expectations must be cultivated as tacit knowledge, and that
takes patience and time.

To support the team in the ever-ongoing learning of how to improve,
keep the team together over time. If you re-assemble teams for every new
product or on a periodic business cycle, each reorganization will take every
restructured team into the well-known struggle of forming, storming, and
norming before reaching a performing stage (Tuckman 1965). That’s waste.
Get rid of it.

Teamwork happens on the scale of milliseconds. Just watch a football
team. Or, better yet, watch a software team engaged in a design meeting.
It’s exactly this kind of feedback that can reduce architecture efforts from
months to days by displacing formal communication channels and forums
with real people in real time. If a team is not co-located, you lose these
feedback loops. To sustain team effectiveness, keep the team together in
space. A multi-site team can work but will have difficulty sustaining the
same pace as a collocated team, everything else being equal. Martin Fowler
writes (Fowler 2006) that multi-site development requires more written
documentation and, in general, more formal communication styles, than
co-located teams do.

There are many variations of Conway’s Law that provide guidance
for organizing teams. The primary organizing principle is that the team
structure should reflect the architecture. However, even that is difficult,
because architectures themselves have crosscutting concerns. In the DCI
architecture (Chapter 9), the structure of roles and their interactions cuts
across the structure of the domain objects. And beyond this simple part
of Conway’s Law, you also want the organizational structure to align
with your market structure. You also want it to align with the physical
distribution of people. You also want it to align with the structure of the
business. Figuring out exactly how to structure a team means balancing the
tradeoffs that emphasize different ones of these organizations. We’ll cover
this more intricate form of Conway’s Law in more detail in Section 5.2.

For completeness, one organizational structure that we know does not
work is to isolate all the architects in their own team.

No matter how you organize it’s important to keep the boundaries
between the teams thin. Any work on the architecture must cut across
organizational boundaries.

66 Chapter 3

3.5 No Quick Fixes, but Some Hope

Today’s software products are complex, and are often developed by a
multinational work force. We live in a global economy, and multi-site
development is a common strategy to grow the organization. It’s hard to
do ‘‘everybody, all together, from early on’’ in a multi-site organization. The
simple solution is for each location to work as an independent enterprise.
That is possible only if the parts are adequately de-coupled.

We revisit organizational concerns again in Section 5.2 and elsewhere in
upcoming chapters to deepen our appreciation of the complex relationships
between teams and their code. While this book is perhaps enough to get you
started, other sources add deeper insight to organizational issues. The book
Organizational Patterns of Agile Software Development (Coplien and Harrison
2004) describes how to balance approaches such as Organization Fol-
lows Market, Organization Follows Location, and Conway’s Law.
These patterns at first seem contradictory and, in reality, it’s a challenge
to make all three alignments co-exist. Dozens or perhaps hundreds of
organizations have found how to keep their stakeholders content with a
suitable balance of these patterns.

You probably feel that it’s daunting, or that it’s hard. Many organizations
have gone before you and risen to the challenge. You’re Agile. We trust
you. You’ll figure it out.

C H A P T E R

4

Problem Definition

Architecture is one product of an activity called design, and there is no
design without a problem. A problem definition is an explicit, written state-
ment of a problem: the gap between the current state and the desired state.

Before we lay out the route to our destination, we have to know where
we’re going. More often than not, when we ask software developers what
problem their product solves, the discussion goes something like this:

What problem are you solving?
‘‘We’re trying to become more object-oriented.’’
No, that’s a solution to some problem, not a problem. What problem are

you solving?
‘‘Oh, we’re using object orientation so we get better reuse.’’
No: reuse is itself a solution to some problem. What problem are you solving?
‘‘Well, the last project was too costly and we’re trying to reduce our

costs.’’
How many alternatives did you consider?
‘‘Well, none. Everyone else is using objects, so we decided to take a

low-risk path.’’

If you recognize your organization in this reasoning, you’re hardly alone.
Grandpa Harry always had a sense of purpose when he set out to build

something. Whether it was serious (a house for his family), generous (a
small railway station for Jim’s model railroad set), or whimsical (carving
a small wooden puzzle or toy) it was always purposeful. Your projects
should probably be purposeful, too. A good problem definition can help
point the way.

67

68 Chapter 4

Many of the principles of problem definition apply in many other
microcosms of design. Problems are closely related to goals in use cases
and, in general, are closely linked to requirements. Keep this in mind when
reading Chapter 7 in particular. However, also remember that problem
definitions aren’t a club that you can use to beat other project members
into submission, and don’t go looking for problem definitions under every
rock. Most problems are a matter of everyday conversation and feedback.
Related concepts such as goals and objectives also have their own specific
place in your planning (Section 4.6).

4.1 What’s Agile about Problem Definitions?

Agile is about working software. Software provides a service that solves
some problem, and it works only if it solves that problem.

A good problem definition can be a catalyst for self-organization. The
Agile notion of ‘‘self-organization’’ means neither ‘‘no organization’’ nor
total lack of structure. Systems in nature that self-organize are called
autopoeietic systems. They usually organize around some simple law or
set of laws or ideas, and always include a notion of reflection or at least
of self-reference. Nothing outside of a cell organizes a cell; its structures
take the molecules and energy in its environment to build and sustain
the overall cell organization that in turn gives rise to these structures
(Wikipedia 2009). Problem definitions can provide the catalyst, or seed
crystal, that can cause a team to organize and figuratively crystallize its
thoughts into a consistent whole.

4.2 What’s Lean about Problem Definitions?

The deepest foundations of Lean feature a continuous process of innovation
that increases value to the end user, and decreases or eliminates everything
else. A good problem definition brings focus to the entire team – an
outward focus that is broader than the local problems of their cubicle or
work group and that ultimately supersedes any local focus.

Even though a problem definition draws the team’s focus beyond its
own proverbial navel, it is still within the scope of the system that gives
the team its reason for being. Much of Lean is about systems thinking,
and a properly leveled problem definition can take the team beyond its
preoccupation with the solution to more clearly be able to understand
the problem in context. We’ll talk more about the contextual framing of
problems in Chapter 7, but for now we’ll focus more basic notions of good
problem definitions.

Problem Definition 69

To a casual observer, problem definitions look like waste. It is time spent
away from the keyboard, and our Western upbringing tells us that we are
avoiding work or being unproductive when ‘‘just talking.’’ But Lean is full
of paradoxes like this (Liker 2004, pp. 8–9). Sometimes the best thing you
can do is to idle your equipment and stop making parts; sometimes it is
better to avoid computers and IT and to resort to manual processes, just
because people are a more flexible resource.

Perhaps the most obvious tie from problem definitions to Lean is their
foundation for consistency. Lean asks us to reduce tensions and inconsis-
tencies in a system. A problem statement at least articulates a consistent
objective. Too often projects suffer from the simple problem that its mem-
bers are not all solving the same problem. A well-written problem statement
offers a consistent vision of direction. As such, it can be a powerful team
tool or management tool.

A problem definition forms near the beginning of a project and may
evolve over time. You should view it as an up-front investment – not
investment in a reusable artifact, but an investment in your people and
your customers. Lean is based on ‘‘a culture of stopping or slowing down
to get quality right the first time to enhance productivity in the long
run’’ (Liker 2004, p. 38). Reworking ideas early in the process helps you
avoid the more costly reworking of code later in the process. This fits
with Boehm’s software engineering findings that a bug discovered in a
requirements review costs you 70 times less to fix than one discovered in
the field (Boehm 1976). Problem definition is one of your first chances to
get it right. It takes time, but time taken here is potentially a lot of time
saved later. As Grandpa Harry used to say: A stitch in time saves nine.

We won’t make any pretense that you’ll always get it right the first
time. Lean is also about continuous process improvement, about turning
every coder into an architectural innovator. It’s about challenging the
expectations of your end user and customer, lifting them to new levels of
awareness about their own wants and needs. That means that you’ll be
chasing a moving target. But we almost always do, anyhow, and good
process improvement coupled with Agile principles can help the target
settle down more quickly. And as for moving targets – well, we embrace
change. We’ll discuss this more below.

The Lean literature is full of techniques to support problem definition,
such as asking ‘‘Why?’’ five times every time you encounter a problem;
the goal is to drive to the root cause (Liker 2004, p. 252–254). Lean is
designed for complicated systems, whose problems often can be isolated
to a ‘‘root cause.’’ Software systems are not only complicated: they are
complex. Though you can track a system effect back to set of causes you
can’t always chart a path from cause to effect. We compensate for this
with the Agile principle of frequent feedback. In any case, a good problem

70 Chapter 4

definition removes one large degree of uncertainty from development. It
won’t remove your team from the ship in the storm, but it will at least help
ensure that they are on a chartered ship.

4.3 Good and Bad Problem Definitions

A good problem definition has these characteristics:

1. It is written down and shared.
2. It is a difference between the current state and some desired state of

the organization or business.
3. Its achievement is measurable, usually at some mutually understood

point in time.
4. It is short: one or two sentences in clear, simple, natural language.
5. It is internally consistent: that is, it does not set up an

over-constrained problem.

Though problem definitions are short and can be developed in a short
period of time, their importance far outweighs their size. As with many
artifacts in Agile, it isn’t so much the artifact itself that is important as the
process for creating it. Good problem definitions nonetheless share a few
key properties that help focus that process. We’ll take a little time here
exploring good problem definitions and some of the ways that problem
definition can get off-track.

Here are some examples of good problem definitions:

To be able to sell a picture transfer application that will work with
90% of the phones on the market.

This is a pretty good problem definition. It is measurable. It defines the
problem as ‘‘being able to sell,’’ which is a business proposition, rather
than ‘‘designing and building.’’ The latter is a more constrained solution;
as stated, it points more directly at the problem.

Here is another one:

All television signal transmissions will be converted to FCC standard
digital format by 1 January 2009.

The result is measurable (provided that the FCC standard is well-
defined), and we are even told when we should apply the measurement to
evaluate success. If we ask Why? we might be told that the law requires us

Problem Definition 71

to meet this conversion timetable. We might have written another problem
statement that viewed the impending law itself as a problem and might
have worked with our lobbyist to delay the enforcement of the law, at least
for us. But that would be a different problem, and it would show up as a
different problem definition.

Let’s look at some bad examples. Consider this one:

We need to become object-oriented.

We actually heard this one a lot from our clients in the 1980s. Why is it
not a good problem definition? Because it’s not at all apparent that there is
even a problem: a difference between the current state and a desired state.
This is a solution, not a problem! We can get a hint that this is not a good
problem definition by asking Why? five times. In fact, if we do that, one of
the answers may point the direction to a good problem definition.

Here is another one:

To be the best we can be at delivering on time.

What’s the problem with this one? The result isn’t measurable (a short-
coming of the preceding one as well). The problem will never be solved,
almost by design.

Here is yet a third one:

We need to increase productivity 40% while cutting costs 40%.

This is more like a requirement list than a problem statement. First, it is
really two problems, not one. Second, it may be a solution in disguise. Ask
why we need to hit these targets. Third, it may set up an over-constrained
problem if productivity and cost are linked.

Here is a subtle one:

We want the most user-friendly time entry system in the industry.

The main (but not only) challenge with this one is that it is not testable.
Sometimes asking Why? five times can lead you from a poor problem

definition to a good one. Consider this one as a starting point:

Our quality sucks.

Well, O.K., there must be something more we can say. We ask Why? The
answer comes back ‘‘Because users report a lot of bugs.’’ We could even
make that into a problem statement:

72 Chapter 4

Users report more bugs per release than our competition does.

Why? we ask, anticipating that the discussion will take a turn into testing.
‘‘Because users complain that they go all the way through our ordering
and payment screens before they find that an item is out-of-stock.’’ Aha.
Maybe we are missing some scenarios in our use cases and we need to go
back and ask for more user stories from the end users. Maybe our problem
statement ends up being:

The system does not properly handle end-user orders for out-of-stock
items.

That’s a problem definition that the team can get its teeth into.
No matter what your title or organizational level, and no matter why

you are creating a problem definition, it always pays to ask Why? five
times. Get beyond the symptoms to the problem, and take ownership of
the problem by articulating it yourself.

4.4 Problems and Solutions

If you think that problem is to solution like cause is to effect, you’re probably in
for some surprises during design. The relationship between problem and
solution is rich and complex. Broad experience with methods has shown
that, in fact, you can’t start with a problem definition and methodically
elaborate it into a solution.1

There are two simple facts to remember when administering your
problems and solutions. The first one is that the mapping from problems
to solutions is many-to-many. Consider a house that has a room with
poor light. Furthermore, there are rooms in the house with poor summer
ventilation. A single solution – a window in the dark room – might be
enough to solve both problems. Grandpa Harry always loved it when
he could kill two birds with one stone. However, you should also be
aware that four or five seemingly unrelated solutions might be required to
solve what you perceive as a single problem. Some problems, like world
hunger or world peace, seem to defy any mapping at all. The problem
that you face in software design has intrinsic complexity in the same
family of problems as world peace and world hunger: they’re called wicked
problems. The comparison is a perhaps a bit dramatic, but it is a formally
apt comparison. There are no proven escapes from this difficulty except
constant attentiveness and adjustment. It’s just enough to keep one humble.
But such adjustment is also what Agile is all about.

1 Cross (1984) is a good source on this topic.

Problem Definition 73

4.5 The Process Around Problem Definitions

Your initial problem definitions might take a bit of work.
Much of Agile – and Scrum in particular – is based on a fact of life called

emergent requirements. Grandpa Harry used to say that the best laid plans
of mice and men often go astray. You can’t master plan a project and
expect to follow the plan. Agile folks know that. However, most Agile folks
think that means only that we discover new problems along the way. It
isn’t just that we discover new problems: the act of design actually creates
new problems. More to the point, the act of design sometimes changes the
very nature of the problem we have set out to solve. We must revisit the
problem definition to refresh it now and then.

4.5.1 Value the Hunt Over the Prize
The underlying Agile value here is people and communication. There
is an old French saying: ‘‘The hunt is more valuable than the prize.’’
It is much more important that the team is in dialogue, discussing the
problem identity, than that the final problem definition is perfect. Any
given definition is potentially ephemeral, anyhow, and the value comes
from dialogue. Problem definition expert Phil Fuhrer says it well (2008):

Just the effort of trying to crystallize the client’s needs into a statement
that speaks to the designers is worthwhile even if the output is not
finalized. It is about communication.
A good or great problem definition is harder to characterize. I would
say that a good problem definition is one that leads to a successful
project. It must fit project’s product and process. Most of the problem
with problem defining is that it is hard to align the defining effort with
the project’s process culture. Project managers often like to manage
clear-cut deliverables and tend to rush the chartering, scoping, and
other get-started tasks.
Measuring how well it captures the critical success factors of the client
or how well it focuses the design effort is itself a problem. The four
considerations (function, form, economy, and time) are helpful but I
have seen problem definition efforts get hung up on them.
Having said that I would say that a great problem definition opens up
possibilities and identifies and addresses overly constrained problems.

It is still crucial to drive toward a single, simple, closed-form problem
definition; otherwise, you end up with analysis paralysis. Phil mentions
another key concern: over-constrained problems. It’s easy to define a

74 Chapter 4

problem that is impossible to solve, such as is often the case with space/time
tradeoffs, cost/schedule tradeoffs, build/buy tradeoffs – in fact, just about
all design decisions are tradeoffs and therefore open up the opportunity for
conflict between desiderata. Great design is finding just the right solution
that lets you have your cake and eat it too, but competent design is
realizing when the business just won’t allow such magic, owning up to
that realization, and making hard decisions based on the consequences of
that realization.

4.5.2 Problem Ownership
Jerry Weinberg is articulate on the topic of problem ownership. It is a
simple concept but is commonly misconstrued. The question should arise:
Who owns the problem? The answer should always respect the people with
the power to solve the problem.

It’s common in life that one person formulates a problem and hands
it over to someone else to solve. You ask your secretary to get rid of a
salesman. Your boss asks you to cut your budget by 15%. The customer
asks you to fix a bug. While these situations will persist in the real
world, it’s better if the person who owns (or who will own) the problem
writes the problem definition. Otherwise, problem statements become a
way for one person to wield power over another, and that constrains the
self-organization and feedback that make Agile work.

As a stopgap measure, anyone can receive a ‘‘request to fix something’’
that originated somewhere along the lines of power in the organization,
re-write it as a good problem definition, and feed it back to the requestor.
Such feedback ensures that you are solving the right problem, that you
together understand what the solution criteria are (they are measurable),
and that the problem doesn’t have a built-in trap that will lead to failure.
That is a way to use problem definitions responsively.

In a true Agile organization, the team strives to expand the scope of
problem ownership so that the problem definition opens up possibilities
rather than focusing on how to allocate blame. This means that those
responsible for solving the problem have a part in defining the problem.
Problem statements shouldn’t be a way for one person to wield power
over another, but should help channel the energy of the organization
in a consistent direction. A problem definition has more power if used
proactively than if used reactively. It won’t always work out that way, but
keep striving to expand the scope of problem ownership. Keep it simple,
fast, and light.

Problem Definition 75

An Example of Problem Ownership: Scrum

In Scrum, the Product Owner owns the problem of sustaining the
ROI vision and meeting ROI targets. The Team supports the Product
Owner in solving this problem by delivering product in the order
specified by the Product Owner. The Team owns the problem of con-
verting Product Backlog Items (PBIs, or requirements) into product,
and the Product Owner supports the team with enabling specifica-
tions and ongoing clarification of requirements. The ScrumMaster
owns the problem of improving the culture and the process, and
supports the Team by working impediments that prevent them from
solving their problems. The ScrumMaster owns a list of problems
called the impediment list, one of the main artifacts supporting pro-
cess improvement in Scrum. Taking away someone else’s problem
ownership (e.g. by taking over their problem) is disempowering and
de-motivating.

4.5.3 Creeping Featurism
Though problem definitions evolve, it is important to avoid slippery slopes
and creeping featurism. There is always a tradeoff between being able to
take on new problems and being able to hold to your commitments for
solving the ones already on the table. All kinds of red flags should go
up when a latent requirement, emergent requirement, or other surprise
substitutes something new for something you are working on. Scrum nicely
solves this by giving the team the option of tackling the newly formulated
problem or rejecting it, on the basis of keeping a time-boxed commitment
to what the customer expects. If the business can’t live with the team’s
decision, then the new problem becomes a business crisis suitable for
discussion at the business level. Lean views such a crisis as a positive
thing that draws the team onward and upward. It is usually important
to convene a ceremony of the pertinent size and scope when the problem
definition shifts; see the organizational patterns Take No Small Slips
(Coplien and Harrison 2004, pp. 54–55) and Recommitment Meeting
(Coplien and Harrison 2004, pp. 60–61).

76 Chapter 4

4.6 Problem Definitions, Goals, Charters, Visions,
and Objectives

Agile is full of casual terminology for this issue of what-direction-are-
we-going. We urge teams to distinguish between the following named
concepts.

An objective is a waypoint that we must achieve to succeed. To not achieve
an agreed objective is a call for reflection and process improvement. In
Scrum, the collective contents of a Sprint backlog form an objective for
the Sprint. A problem definition is most often a form of objective. We can
compare objectives to other important concepts that draw us forward.

A vision is a broad, inspiring portrait of a world that our system can help
to create. It might relate to broad convenience that results from adopting
our product; it might relate to increased profits for the company; it might
relate to growing market share.

A goal is the desired endpoint in the best of all possible worlds. In use
cases, the goal is what the main success scenario achieves. If we have a
telephone use case named ‘‘Call up a friend,’’ the goal is to talk to the
party we are calling. Sometimes we don’t achieve that goal – because our
friend is busy, or because the system is overloaded, or because we forget
the phone number in the middle of dialing. Yet all these scenarios are part
of the ‘‘Call up a friend’’ use case and each works toward the same goal.
Grandpa Harry always had the goal of completing his mail delivery route
by 3:30 in the afternoon. Sometimes he made that goal, and sometimes he
didn’t. That he sometimes didn’t make that goal doesn’t mean that he was
a failure.

A Sprint goal in Scrum is usually more closely tied to ‘‘Done’’ than in
the broader use of the term goal, so a Sprint goal is really an objective
most of the time. Therefore, a Sprint goal can conveniently be described
as a problem definition. We’ve seen a lot of confusion around this term in
Scrum, so you should be sure that everyone means the same thing when
invoking this term.

A charter is a document that describes ongoing group work practice.
A charter usually comes from a chartering organization to a chartered
organization, though the chartered organization can have a say in the
charter’s content. Charters very easily challenge Agile foundations. I
recently looked at a charter document template created by a well-known
facilitator; the boilerplate itself was over 15 pages long. That’s not Lean.
Furthermore, the us-and-them notion of charter-er and charter-ee breaks
down the notion of team that is crucial to effective communication in Agile
approaches such as Scrum.

Problem Definition 77

4.7 Documentation?

When a manager comes to me, I don’t ask him, ‘What’s the problem?’ I say, ‘Tell me
the story.’ That way I find out what the problem really is.

Grocery store chain owner Avram Goldberg, quoted in The Clock of the Long Now,
p. 129.

It’s a good idea to circulate your problem definition broadly in written
form. The work of producing a tangible problem definition provides focus
for the team and can bring together what is initially just a group of
people and provide a seed for team dynamics. But remember that the main
value isn’t in the document and that it’s not Lean to produce something
unnecessarily large. A statement of one or two sentences is ideal, and a
page is too long.

There is something strangely powerful about documenting problem
definitions on paper. Don’t bury them as a field on some methodological
form deep in some database. We’d discourage you even from using E-
mail as the primary distribution mechanism. Try printing your problem
definitions on small pieces of paper (small is beautiful, and emphasizes the
non-methodological tone of a good problem definition) and hand them out
to all the stakeholders. Have all the stakeholders autograph a copy on a
major project. Make it fun, not a death march. Use problem statements to
open up possibilities.

Software problem definitions, written or not, live in an oral culture. They
may be written as stories, or as one- or two-sentence distillation of stories,
but they almost always have stories behind them. Celebrate these stories
in the oral culture and share them around the virtual campfire. Stories can
range in formality from user stories to use cases to war stories from a client
or an old project.

C H A P T E R

5
What the System Is, Part 1:

Lean Architecture
Starting anew with a clean slate has been one of the most harmful ideas in history.

The Clock of the Long Now, p. 74.

Grandpa Harry had a riding lawnmower that he owned for about a decade.
He took very good care of the machine, keeping it well oiled and in good
repair. He knew every inch of that machine: each bearing, each belt, each
linkage, and each engine part.

However, the lawnmower broke down after many years of loving use.
The manufacturer had long ceased to stock parts for the old machine. We
went down to the local repair shop where a couple of Grandpa Harry’s
contemporaries had been repairing small motors for years. Bill greeted us
as we worked our way to his desk in the middle of the shop. The place was
a mess: lawnmower carcasses, disembodied parts and fragments scattered
everywhere. A casual visitor could see neither rhyme nor reason to the
arrangement of parts in that shop; indeed, other than in Bill’s memory,
there probably was none.

But, yes, they had the part, and Bill worked his way gradually toward
the treasure, moving obstacles large and small along the way. He came
back to Grandpa Harry, part in hand, and sent us on our merry way after
we paid a token fee for the almost-antique piece of gadgetry. Bill must have
had a map of that entire mess in his head. Perhaps his frequent rummaging
kept the map current, but only he and his partner knew the whereabouts
of things.

It’s a complex task to find our way around the old junkyard that we call
our code base. Maybe the simplest way to maintain software is to create
it from scratch every time instead of trying to patch the existing code. A

79

80 Chapter 5

program is only a delivery vehicle: the real end deliverable is a service,
not a product. The service changes over time and the fact that we have a
product – the code – is a liability. Code is not Lean.

Like it or not, most code becomes an investment, and it’s usually
unreasonable to recreate significant works of software from scratch every
time we need a change. There must be some order to the artifacts that we
create so we can find our way around in them. If we are a team of one,
working on a simple, single application, then we can treat our software like
Bill treated his repair shop. We can claim to know it all. If we work on large
complex systems, we need some order to be able to find what we need
when we need it. Furthermore, the order should stay more or less the same
over time: if it changes every few days, then the order doesn’t really help us.

In this chapter we will help you create a Lean domain architecture for
your system. Such an architecture can support Agile software development
much better than a traditional, heavyweight architecture can. The inputs
to this architecture include well-informed experience of domain experts as
well as end-user mental models. The process starts with simple partition-
ing and then proceeds to selecting a design style (paradigm) and coding it
up. We’ll take a short interlude into fine points of object-oriented design
to provide a foundation for the what-the-system-does work coming up in
Chapter 7 through Chapter 9. The output is code and system documen-
tation. We will create class interfaces, annotated with pre-conditions and
post-conditions, supported by a domain dictionary and a short domain
document for each business area.

Before we get into the real work of architecture, we’re going to cover
important foundations that will make the work easier. This is an Agile
book, and we’d rather give you a fishing pole than a fish. Sections 5.2
and 5.3 are fishing-pole stuff, and the remainder of the chapter talks more
about technique.

5.1 Some Surprises about Architecture

Architecture is one of those terms that has as many meanings as there are
people who use the term. The term came into software through Fred Brooks
while at IBM, who one day in the 1960s asked Jerry Weinberg whether
he thought that what architects did was a suitable metaphor for what
we do in software, and Jerry agreed (Weinberg 1999). An early-published
use of the term can be found in Buxton and Randell (1969). Even in the
field of urban design and building architecture, the title of ‘‘architect’’
has taken on a disproportionate sense of power and mastery (Rybczynski
1989, p. 9; see Section 3.2). In this book we heed time-honored principles of
architecture that may be a little bit different than you find in your culture or

What the System Is, Part 1: Lean Architecture 81

organization, and we want to avoid misunderstandings. So here are a few
clarifications, drawn largely from the classic notion of the term architecture:

■ Architecture is more about form than structure. Form is the essence of
structure. Think of form as being the essential shape or arrangement
of a thing without regard to what it is made of, and of structure as the
reification of a form. In this chapter we strive toward an architecture,
which, though concretely expressed in code, communicates form
without the clutter of structure. If we capture the form (including its
associations and attributes) without expanding into full structure (for
example, methods and data members), we stay Lean. That leads to an
architecture that can scale and evolve better than one cluttered with
the structure of premature implementation.

■ Architecture is more about compression than abstraction. Abstraction is
‘‘the process of considering something independently of its
associations, attributes, or concrete accompaniments’’ (NOAD 2007).
In architecture we want to consider system entities together with their
associations and attributes! But we want to keep the architectural
expression compact. We keep the architectural expression small by
appealing to standards and the domain knowledge shared by the
team. In the same sense that poetry is not abstract, but compressed, so
is architecture: every word means something more than its common
dictionary definition.

■ Much architecture is not about solving user problems. Users care about the
function of software more than its form, just as you care more about
getting a good meal and night’s sleep in a hotel than you do about its
architecture. You care that the hotel supports the activities of eating
and sleeping. There is an indirect link between form and function,
because form arises over long periods of time as systems learn how to
support what we want to do. Hotels have evolved to a form different
from that of houses or churches, each according to its function. But
the day-to-day end user focuses on function rather than architecture.
Traditionally, it is function and not form that is in the value stream.
This has led many schools of software architecture to make the
mistake of driving architecture with requirements.

A good system form gives the vendor enough flexibility to respond
to new end user expectations within a given problem space. Much
software architecture has evolved to the point where we focus on
properties that we believe to reduce cost in the long term, such as
coupling and cohesion, without much regard for function. By going
beyond coupling and cohesion to the end user world model, Lean
architecture brings architecture squarely back into the value stream.

82 Chapter 5

■ Architecture has both a static and dynamic component. In this chapter
we’ll focus on that part of architecture that changes little over time.
This relatively static form comes from the domain structure. It is like
the form of a great ballroom that over its lifetime will witness many
balls and many dancers. We’ll return to the dancers in Chapter 7, but
for now we’ll focus on building the environment suitable to whatever
dance your system is bound to perform.

■ Architecture is everybody’s job. The job of architecture is too important
to be left to the architect alone. In an Agile world based on
stakeholder engagement and feedback, we invite everyone to the
party. Doing so reduces waste, reduces the intervals that come with
those review meetings that are scheduled weeks in advance, and
develops buy-in across the enterprise for the system design. This isn’t
to say that architecture can be done by just anybody; we’ll insist that
the team collectively have many of the talents of traditional architects,
and then some. But we also face the stark reality that it’s becoming
increasingly difficult to find the ideal single person to master plan the
system. Instead, we recognize that together we know more
than any one of us.

■ Architecture need not be hard! Architecture has a tradition of taking a
long time. It also has roots in project fear of failure. We also tend to
have a misplaced belief that something can have great value only if it
is hard to achieve. It needn’t be that way. Lean eliminates the kind of
wait states that draw out a few days or weeks of real architecture
work over months of elapsed time. By involving the whole team in
architecture, we not only reduce wait states, but also reduce the fear
that comes from believing that architecture is something that
somebody in power does to the coders. Yes, like all design and
programming, it’s good honest work and should be taken
seriously – but if it feels like drudgery, you’re probably
doing it wrong.

5.1.1 What’s Lean about This?
We started writing this book to relate useful architectural practices for an
Agile project, as we felt that nature had left a vacuum to be filled. The
more we put our thoughts to words, the more that we discovered that
good Agile architectural practice might best be expressed in terms of Lean
principles. In retrospect, that shouldn’t have been a surprise. Lean in fact
has little or nothing to do with automobiles and everything to do with
product, with value, and with the people in the design, production and
maintenance processes. Much of what passes for Agile in Scrum these days

What the System Is, Part 1: Lean Architecture 83

in fact comes directly from Lean (in particular, from the paper by Takeuchi
and Nonaka (Takeuchi and Nonaka 1986)).

Deliberation and ‘‘Pull’’

Lean is based on ‘‘a culture of stopping or slowing down to get quality
right the first time to enhance productivity in the long run’’ (Liker 2004,
p. 38). Architecture comes from early and ongoing deliberation about the
overall form of a system, and it comes out of patience that can put aside
pressure to attend to the squeaky wheel. Analogous to the quote from
Liker, the goal is long-term productivity. Investing in architecture now
lays a foundation for more productive work over the long term.

Getting quality right the first time is a goal to shoot for, not an objective
that defines success and failure. To set an absolute definition of quality
and to gauge success by whether we met that foreordained number or
mandate is to presume more control over the future than is humanly
possible. We embrace the changes that arise from latent requirements,
emergent requirements, and just stupid surprises, because that’s the real
world. However, every moment we strive to do the best we can, given
the information at hand, knowing that the future will bring us more
information.

The Lean notion of quality makes more sense when we think of the
value stream, and of the notion of ‘‘pull’’ versus ‘‘push.’’ Pushing is like
an act of distancing one’s self from the rest of the system; pulling is
a way of bringing the system closer. The end user ‘‘pulls’’ the product
through the value stream from its raw materials to the delivered product.
The human-centric ideas of the next section have their roots in the Lean
principle of ‘‘pull.’’

Failure-Proof Constraints or Poka-Yoke

Grandpa Harry sometimes applied his woodworking skills to cabinet
making. If he had a lot of duplicate cabinet doors or drawers to build,
he would sometimes build a ‘‘jig’’ to guide the cutting or assembly of
the parts. His cabinets were still hand-made craftsmanship, but he made
tools to help him in the tedious repetitive tasks of assembly. It was a good
way to avoid the kind of stupid mistakes one can make when undertaking
tedious, repetitive tasks. What he was doing was a simple form of the Lean
concept of poka-yoke – the idea of using a guide or jig that makes it almost
impossible to put together an assembly incorrectly. It means ‘‘fail-proof’’ in
Japanese. (They originally used the Japanese for ‘‘idiot-proof’’ but political
correctness won out.)

84 Chapter 5

Software architecture is a perfect reflection of the Lean concept of
poka-yoke. It guides the engineer (in the case of software, the feature
programmer) to write code that ‘‘fits’’ with the rest of the system. Poka-yoke
is not a punishing constraint but a guide and help.

Poka-yoke is a good fit for Agile development. As team members work
together during an iteration, it is possible for one developer to check in
even a rough implementation of some feature while others work on other
features, even within the same integration. Architectural firewalls protect
the overall system form – a form that reflects longstanding experience
and systems thinking. The structure remains more stable, which means
less rework.

The Lean Mantras of Conservation, Consistency, and Focus

Good software architecture embodies several more Lean principles. As
mentioned above, it reduces rework. It provides an overall consistent sys-
tem view: to reduce inconsistency is a central theme in Lean. It helps keep
the team focused on the feature and its value during feature development
by removing most of the need to worry about system form, and that keeps
development flowing in the heat of change. But most directly, software
architecture reflects an investment economy. Lean believes in short-term
loss for long-term gain. Here ‘‘investment’’ is a better term than ‘‘loss.’’

5.1.2 What’s Agile about Architecture?
It’s All About Individuals and Interactions

Agile is all about ‘‘individuals and interactions over processes and tools.’’
So, in fact, is architecture! We ask people in our seminars, ‘‘Why do we
do architecture?’’ The answer usually relates to coupling and cohesion
(Stevens, Myers, and Constantine 1974; Yourdon and Constantine 1975)
and other classic measures of good architecture. Why do we strive for
those? Does our software run better if its modules have better cohesion and
if they are better decoupled? In fact, one can argue that a good architecture
slows the code down by adding layers of APIs and levels of indirection.

No, we value architecture for the sake of what it portends for individuals
and interactions. Grandpa Harry used to quote the old saw that ‘‘birds of
a feather flock together,’’ so individuals group according to their domain
expertise, or at least according to their domain responsibilities. Each of these
little groups should have its own software artifact that it can manage and
evolve with minimal interference from the outside – that means minimal
coordination with other little groups who each have their own artifacts.
If we divide up the artifacts according to the domain expertise we find

What the System Is, Part 1: Lean Architecture 85

in these groups of individuals, we provide each team more autonomy in
the long term. That allows each team to be more responsive (‘‘responding
to change over following a plan’’). This is called Conway’s Law (Conway
1968). We support Conway’s Law by delivering just enough architecture
to shape the organizational structure.

It’s not just about the individuals on the team and their interactions.
Architectural concepts extend all the way to the end user. Jef Raskin tells
us: the interface is the program (Raskin 2000). More precisely, the concepts
in the end user’s head extend all the way into the code. If these structures
are the same, it closes the feedback loop of understanding between end user
and programmer. This isomorphism is the key to the direct manipulation
metaphor developed in the early days of Smalltalk: that end users directly
manipulate the software objects in the program, objects that should reflect
the end user mental model. No amount of interface sugarcoating can hide
the deep structures of code. Just try using your favorite word processor to
place a picture exactly where you want it in the middle of the paragraph.
The underlying program structure wins out in spite of the best efforts of
interface designers and user intuition.

The organizational structure reflects the architecture; the architecture
reflects the form of the domain; and the domain has its roots in the mental
models of end users and other stakeholders. Architecture is the explicit
artifact that aligns these views.

Past Excesses

Software architecture has a history of excesses that in part spurred the
reaction called Agile. Software architecture of the 1980s was famous for
producing reams of documentation that no one read. The CASE tools of the
1980s were particularly notorious for their ability to produce documenta-
tion even faster than human beings could – again, documentation that was
often write-only.

But Agile is about ‘‘working software over comprehensive documenta-
tion.’’ We will strive for an architecture delivered as APIs and code rather
than duplicating that information in documents. While the interface is the
program, the code is the design. One of the heaviest costs of software
development is the so-called ‘‘discovery cost:’’ knowing where to find the
code for a particular business area, or trying to find the source of a fault.
Comprehensive documentation of the system organization is one way to
do it. But if the code is well organized, we can let the code speak for itself
instead. Code has formal properties that elude most documentation (for
example, type conformance of interfaces) that make it even more valuable
as a design document. Yes, there will be some documentation, too, but

86 Chapter 5

we’ll keep it Lean. After all, the Agile Manifesto doesn’t say to ‘‘elimi-
nate documentation,’’ and Lean just admonishes us to make sure that the
documentation feeds the value stream.

In the past, architecture not only produced an impressive mountain of
artifacts but also took an inordinate amount of time. We have a client who
takes 6 months to take a new requirement into production, and much of
that time is architecture work. If you look closely, much of the time is spent
in writing and reviewing documents. One team member lamented that
‘‘many of the things we write down simply because they are true.’’ That
is waste. With everybody, all together, from early on, we eliminate these
delays. It isn’t unreasonable to compress these six months down to one or
two weeks if communication between team members is great.

Dispelling a Couple of Agile Myths

Desire always misreads fate.

The Clock of the Long Now, p. 115.

The Agile world is full of practices that are reactions to these past excesses.
Sometimes, these are over-reactions that go too far. Here we briefly look at
two common failure modes in Agile projects.

The first belief is that you can always re-factor your way to a better
architecture. While this is true in small degree, particularly for very small
projects, it becomes increasingly difficult with the scale of the system and
size of the organization. Time hardens the interfaces and the entire system
slowly hardens. It is like stirring a batch of cement: eventually, it sets, and
you can’t stir it any more.1

Re-factoring shows up as a practice in its own right, done for the
sake of clean code (Martin 2009) and as a key practice of Test-Driven
Development (TDD) (Beck 2002). In its original form, TDD was a design
technique for programmers based on unit-test-first.2 It grew out of distaste
for big up-front architecture, and proposed to displace such practices with
incremental architecture evolution. It claimed that it would improve the
coupling and cohesion metrics. It would be a fortuitous result if cleaned-
up feature development would not only generate near-term revenues, but
could reduce long-term cost as well. However, empirical studies don’t
bear these hopes out. A 2008 IEEE Software article, while reporting the

1 Thanks to Ian Graham for this delightful image.
2 Actually, the historic progression started with an article by Kent Beck (Beck 1994) that described
how Smalltalk had suffered because it lacked a testing culture, and the article proposed how to
solve the problem with a test framework. That framework evolved into the form it took in an
joint article with Eric Gamma in 1998, which today we know as jUnit (Beck and Gamma 1998).
Test-first was part of XP in 1999 (Beck 1999), and TDD techniques matured by 2002 (Beck 2002).

What the System Is, Part 1: Lean Architecture 87

local benefits of re-factored code, found that their research results didn’t
support TDD’s coupling and cohesion claims (Janzen and Saledian 2008).
Research by Siniaalto and Abrahamsson concludes not only that there is
no architectural benefit, but also that TDD may cause the architecture to
deteriorate (Siniaalto and Abrahamsson 2007a, 2007b).

The supposed link from re-factoring to architecture arises from a belief
that form follows function. That may be true, but only over the aggregation
of hundreds or thousands of functions over the system lifetime. This
link also presumes that re-factoring’s scope is broad enough to straighten
out system-level relationships. However, re-factoring is almost always a
local activity, whereas architecture is a global concern. There is a serious
mismatch between the two.

A second common belief of Agile is that we should do things at the last
responsible moment (Cohn 2004, p. xv). It’s a bit of a problematic formula-
tion because one never knows exactly when the magic moment has slipped
past. It might be better said that we shouldn’t make decisions irresponsibly
early – or late. If you have enough information to get started, then get
started. Trying to solve the problem will cause emergent requirements to
surface a lot faster than if you just wait for them to walk up and introduce
themselves, or to come to you in a dream, or to appear while working
on an unrelated feature. Use the pattern Get On With It (Coplien and
Harrison 2004, p. 38): start as soon as you have enough insight to set an
initial direction.

What makes a decision irresponsible? We get in trouble when we don’t
have enough insight to support the decision. Postponing decisions increases
the time for learning to take place and for requirements to emerge, and
that is the argument for deferral. But a deferred decision entails more
than the passage of time: we aren’t just sitting in the sun waiting for
things to happen, but are doing work and committing to structure in
the code. Letting time go by as we create structure in the mean time,
without conscious attentiveness to form, leads to undisciplined form. We
may learn something as we work on the code, forging our way a bit into
the dark, but we have also left a trail of poorly informed work that may
have to be unwound and re-done. Therefore, we must balance between
an approach where we unearth and act on fundamental knowledge early,
and one where we allow knowledge to emerge from compounded local,
shortsighted actions.

The fundamental form of a business often repeats itself in system after
system. This constancy means that we know much of it at the beginning of
every project. To defer the decision of what essential domain form to lay
as the system’s foundation is irresponsible because it has a high chance of
creating waste. Therefore, we embrace domain knowledge – stuff that we
truly know about the business – at the beginning of product construction.

88 Chapter 5

5.2 The First Design Step: Partitioning

Grandpa Harry always said that you put your pants on one leg at a time.
As human beings, we are psychologically wired with a feature called a
locus of attention that is closely tied to the notion of consciousness: we
have exactly one of these and, at some level, we can focus on only one thing
at a time. Our first inclination as human beings dealing with complexity is
to divide and conquer.

There’s an old saw that a complex system has many architectures. There’s
a lot of truth to that. If you think of the old-fashioned top-down approach
to system design, it worked well for simple systems. Top-down design
viewed a system as providing some function, where we can use the term
‘‘function’’ almost in the mathematical sense. A program was to take an
input, transform it, and produce an output. Maybe it did this many times,
once for each of thousands of punch cards provided to it as input in what
was called batch processing. The function could be broken down into
sub-functions, and those functions into smaller functions, and so forth.

Another way to think about complexity is in terms of classification rather
than partitioning. Classification is a technique we use to partition items
into distinct sets. There are of course many forms of classification. Think of
classifying the items in the room where you are sitting right now: By color?
By size? By use? By age? There are many different classification schemes
you could use. The same is true with software. The problem is that though
one classification scheme may seem best, many more are at least partly
right. We know a story of some helpful painters who painted the living
room of a couple who are friends of ours out in Glostrup while they were
away on vacation. When they came back, their thousands of books had
been neatly put back on the shelves – nicely sorted by color instead of their
original ordering as they would have been in a library.

Top-down design breaks down for complex systems because a complex
system has many ‘‘tops.’’3 People don’t use today’s interactive, Agile sys-
tems in batch mode: their keystrokes and mouse clicks come in seemingly
random order. End users juggle between ‘‘tops’’ in a session with the
program. Picasso was said to do his oil paintings in an analogous way,
jumping from one area of the picture to another rather than dwelling first
on one part and then on another. (When doing our early work in the 1980s
with the multi-window workstation called the blit4 in Bell Laboratories,
we found that one of the main uses of multiple windows was to maintain
simultaneous views of these multiple ‘‘tops.’’) A good program presents
many tops clearly, and a good architecture expresses them elegantly.

3 Thanks to Dennis DeBruler for this insight.
4 ‘‘Blit’’ does not stand for Bell Labs Intelligent Terminal.

What the System Is, Part 1: Lean Architecture 89

Lean architecture consciously organizes a system according to multiple
meaningful ‘‘tops.’’ Let’s investigate some of the important ‘‘tops’’ of
software, and further investigate ways to use them to partition a system.

5.2.1 The First Partition: Domain Form Versus
Behavioral Form
The Agile Manifesto contrasts responding to change with following a
plan. A timeless goal of software engineering has been to separate code
that changes frequently from code that is stable. For most software, that
dividing line is the same as that between what the system is (that is
relatively stable) and what the system does (that changes as customer
expectations change and grow). In some sense, those are two different
‘‘tops’’ of the system. Most software architectures exhibit this split in one
form or another. For example, client/server systems often load up the client
with most of the ‘‘does’’ code and the server with the ‘‘is’’ code. As another
example, UML divides models into static views (like class diagrams) and
dynamic views (such as interaction diagrams). Our first step towards an
Agile architecture is therefore:

Technique 1

Focus on the essence of the system form (what the system is) without
being unduly influenced by the functionality that the system provides
(what the system does).

There is no explicit design activity where we separate the what-the-
system-does part from the what-the-system-is part. Rather, there are two
parallel, cooperating development streams for these two forms. Work on
the what-the-system-is component often precedes the what-the-system-
does component, because you often have a development team in place
before you have enough behavioral requirements to enable design and
development. Of course, it happens the other way around, too: a customer
arrives on your doorstep and asks for some new software service, and you
already have a start on your what-the-system-does requirements.

This partitioning owes its roots to much history, including the basic way
that computers work (the Von Neumann computational model), the way
we are raised in the Western world (to believe in a dichotomy between
form and function), and all the programming languages and tools that
precipitate from those two foundations.

90 Chapter 5

We can actually state a more general rule of thumb for architecture:

Technique 2

Separate the components of your architecture according to their
differing rates of change.

This same principle applies to the architecture of houses. The stone
foundation may change very slowly, whereas internal walls may come and
go at a historically faster pace, and the floor covering may change even
faster. Look for these ‘‘shear layers’’ in your architecture and separate the
modules at the fault line between them.

5.2.2 The Second Partitioning: Conway’s Law
Given this architectural context we can now actually get to work. As
mentioned earlier, we have two design processes going on. One of
them focuses on what-the-system-is, and another on what-the-system-
does. We’ll focus more on the latter in Chapter 7; here, we’ll focus on
what-the-system-is.

This second partitioning is both one of the least formal and most
important steps of system architecture. Stated broadly and simply, it is:

Technique 3

Focus on the form of what the system is, partitioning it so that each
part can be managed as autonomously as possible.

This recommendation is a consequence of Conway’s Law (Conway 1968;
Allen and Henn 2006). It seems to be a law of software systems that the form
of the product looks a lot like the form of the organization that built it. It’s
not clear which is cause or which is effect in general, but the organization
structure usually precedes design, so the organizational structure usually
drives the architecture. This isn’t a good thing or a bad thing; it just is, kind
of like the law of gravity. And this technique doesn’t exclude looking at
what the system does; it’s just that we’ll come back to that later.

These partitions are sometimes called subsystems. This partitioning
doesn’t look very important to the nerds because of its low-tech and

What the System Is, Part 1: Lean Architecture 91

intuitive nature. In fact, it is a largely administrative partitioning and has
only incidental ties to the business structure (although the administrative
and business structures often align for reasons of history or convenience,
which is a good thing when you can get it). Such partitioning is nonetheless
crucial to the success of the enterprise in accordance with Lean and Agile
principles. It minimizes how much information must pass back and forth
between locations. It supports more effective interaction between team
members, because they share mutual interests, and can talk across a table
instead of across the Internet. (Yeah, it’s fun to talk across the Internet but,
believe it or not, face-to-face communication is usually more effective.)

Autonomy goes hand-in-hand with an important principle of the Agile
Manifesto: responding to change. We want to organize our software so that
common changes in the market and elsewhere in the ‘‘real world’’ can each
be dealt with as a local change, inside one of the subsystems. Subsystems
are a gross form of modularity. So when we talk about autonomy in the
long term, think of it in terms of change.

Technique 4

The dominant consideration in supporting team autonomy is the
locality with which common changes are handled.

Notice that we don’t tell you to partition using objects, or modules, or
rules, or database relations, or any specific methodology. The partitioning
criteria should follow history, standards and convention, experience and
common sense. How do you know if it’s right? Think of the teams that
will work on the software, and do the partitioning in a way that allows
each team to work as independently as possible. (See also ‘‘Testing the
architecture,’’ Section 6.1.6.)

Remember, too, that architecture is mainly about people, and an Agile
perspective helps bring that fact into focus. Think a bit about how your
customers and even end users expect your system to be organized from a
business perspective. Use their vocabulary whenever it makes sense and
organize in a way that supports shared communication and understanding.
For large systems, this initial activity of partitioning probably won’t go very
deep into the end user’s cognitive model of their business and workflow;
that is a more prominent concern of structuring, which we will address in
Section 5.3.

A time-honored software engineering measure of success is that each
subsystem be as cohesive as possible, and be as de-coupled as possible from

92 Chapter 5

the other subsystems. Coupling and cohesion are defined in terms of the
amount of work it takes to change something (Stevens, Myers and Constan-
tine 1974). Tight coupling between two subsystems isn’t a serious problem
if neither subsystem changes much. The challenges arise from change, so
you should always be thinking dynamically when choosing a partitioning.

Of course we’ll get to code (very soon) and we’ll have to decide on
an implementation technique (objects, or modules, or rules, or database
relations, etc.) An Agile approach should honor these four rules of thumb:

1. We use design paradigms (object-oriented, modular, rule-based,
databases) to best support the autonomy of teams in the long term
and to reflect the end-user mental model of the system.

2. A complex system might use several paradigms.
3. The paradigm we use is ideally subordinate to, and supports, the

partitioning based on autonomy of teams in the long term and the
end-user mental model.

4. The object paradigm was consciously designed to meet these goals
and it will usually drive the dominant partitioning.

The key notion here is #3: Strive to let the human issues drive the
partitioning with an eye to the technological issues such as coupling
and cohesion, depth of inheritance hierarchies, the Laws of Demeter
(Lieberherr 1996), and so forth. It is sometimes too easy for nerds to get
caught up in their educational degrees, their religious zeal for a design
technique, or in a misplaced trust in the formalism of a type system or
‘‘formally’’ designed language.

Technique 5

Let the human considerations drive the partitioning, with software
engineering concerns secondary.

Sometimes you are given an over-constrained problem (see Chapter 4)
like ‘‘come up with software for a high-quality, automatic exposure camera
that is compact, lightweight, easy to use, 30% cheaper than existing single-
lens reflex cameras and which is written in Java.’’ The Java stipulation will
certainly influence your system partitioning. While not an ideal situation,
it’s a common one. In Agile software development we inspect and adapt.
Don’t look too hard for a fixed set of rules and guidelines; rather, follow
experience and the deeper principles of design, balancing things as best as
you can to optimize the value stream.

What the System Is, Part 1: Lean Architecture 93

That’s partitioning in a nutshell. Let’s dig deeper into principles related
to partitioning – principles that can help you reason about particularly
complex systems.

5.2.3 The Real Complexity of Partitioning
If you are building a simple product, it is easy to partition the system based
on the rule of thumb of long-term team autonomy. Again, simple implies
‘‘not complex,’’ and complexity is proportional to the number of distinct,
meaningful ‘‘tops’’ of the system. We can talk about these tops from a
purely technological perspective, but that’s not interesting. The technical
perspective deals with only part of what is a much larger complex system.
The organizational structure is also part of that system. If the two major
reasons for architecture are to support the organizational structure and the
end-user mental model, then we should pay careful attention to those.

Let’s say that a company called ElectroCard produces printed circuit-
card layouts for clients’ electronic circuits. These circuits typically require
three to twenty circuit cards to implement. ElectroCard software is to be an
Agile application that has a GUI through which an ElectroCard engineer
can guide the circuit card construction. The founder of the corporation has
hit upon a fantastic opportunity. He has found a group in Hangzhou, China
that knows how to group logic gates into packages available in commercial
integrated circuits (chips), and how best to put chips together on a card
to minimize the number of connections between cards. (This is called chip
placement or just placement in the industry.) And the founder has found a
group in New Jersey that has expertise in algorithms that automatically
route the connections between chips on a board. (This is called routing in
the industry.) Both groups have practical knowledge in human-assisted
algorithms using a GUI. The question is: what are the major organizational
components of the architecture?

If the founder wants to optimize group autonomy in the long term, then
there should be one architectural component for placement and another
for routing. Each would have its own GUI, its own notion of card and its
own notion of chip. You might object and say that it’s obvious that there
should be a common GUI and common libraries for common components.
However, that design doesn’t optimize group autonomy in the long term
given the current groups. It might reduce code duplication, and therefore
reduce rework in the long term, but it would require tight coordination
between groups to be successful. Is it worth it? There might be a tradeoff
between group autonomy and code duplication! That’s a business decision.

It wouldn’t be unreasonable for the founder to ask the teams to create an
architecture organized around the two functions of placement and routing.
But let’s step back a bit and look at the broader landscape of design.

94 Chapter 5

This is in fact a complex problem – one with many more ‘‘tops’’ than just
placement and routing. Emphasizing a particular top optimizes a specific
business goal, so the selection of tops becomes a business question.

5.2.4 Dimensions of Complexity
Let’s start with a simple case. Assume that you’re in the same business as
ElectroCard, but that your development team is collocated, you have one
customer. What does your architecture look like?

Instead of focusing on how to divide work by geographic location
(since you have only one), you create an architecture that will allow an
individual, or a small group of individuals working together, to focus on
one architectural component at a time with as much long-term autonomy
as possible. What bits do you group together? As described above, you let
the partitioning follow history, standards and convention, experience, and
common sense.

Subject matter experts notice repeated patterns that recur over time
in system after system. These patterns tend to follow recognized birds-
of-a-feather areas. We call these areas domains. Domains commonly (but
not always) reflect the end-user mental model of the domain. In some
whimsical sense, domains are the mythological foundation of a given
business that one finds rooted in culture or society.

5.2.5 Domains: A Particularly Interesting Partitioning

Reinventing beats inventing nearly every time.

The Clock of the Long Now, p. 75.

A domain is a business area of focus, interest, study, and/or specialization.
It is an area for which a body of knowledge exists. Sometimes this is just
a tacit body of knowledge, but it is nonetheless a body of knowledge. All
other things aside, domains are the primary ‘‘tops’’ of a system.

What might the domains be in our circuit card application? The
human-guided nature of the product suggests that there is a domain for
interactively editing circuits. The chips themselves form a domain: chips
have functionality, size, power ratings and configurations of connections
that constitute a body of knowledge relevant to the product. Both routing
and placement are traditional domains in electronic design automation.
It is likely that we can find someone with training, experience, or special
knowledge in each of these bodies of knowledge. We might even find small
groups of such people, birds of a feather, who share such expertise in a

What the System Is, Part 1: Lean Architecture 95

small company. The most knowledgeable of them we call subject matter
experts or domain experts, and their area of knowledge is their domain.

Domain knowledge is one of the most distinguishing factors supporting
sound design decisions. Domain knowledge is a distillation of experience
garnered from past systems, competitors’ and partners’ systems, and in
general from being in touch with the area of discourse. Codified domains
capture design decisions about years of tradeoffs between multiple stake-
holders, including multiple communities of end users. These tradeoffs
become refined over time to minimize the long-term cost of change. There-
fore, if we want to give each group as much long-term autonomy as
possible over its software, we form the organizational structure around the
domain structure, and we organize the architecture accordingly. That’s a
key part of Conway’s Law. The Organizational Patterns book (Coplien and
Harrison 2004) describes this as a key pattern of software development
organization.

So we add this to our list of techniques:

Technique 6

Be attentive to domain partitioning. In particular, don’t split a domain
across geographic locations or across architectural units.

What makes domains particularly interesting is that they commonly
designate sets of closely related product variants grouped together in
a product line. A product line closely corresponds to what most people
would recognize as software reuse. A base set of software is common to
several separately delivered variants. The source code in the base is large
relative to the changes necessary for a given variant. Parameterization,
selective use of derived classes with small snippets of custom code (using
design patterns such as Template Method (Gamma et al 2005)), or even
conditional compilation constructs (such as #ifdef in C++) can be used
to configure individual variants.

Think about Conway’s Law again. If domains encapsulate product
variants, then their structure corresponds either to the business structure
or to the structure of some market. Just on basic management principles,
you want your organizational structure to reflect the structure of the
business. If we structure organizations around domains, then by Conway’s
Law we have aligned the business structure, the organizational structure,
and the architecture! That leads us to another tip:

96 Chapter 5

Technique 7

Be attentive to the opportunity to use product lines and use this
insight to bolster support for domain partitioning where possible.

Families are collections of closely related architectural structures, often
related by variations that are small relative to what they have in common.
Family members often show up in the code as generics or templates that
are used to generate multiple instances, or as a collection of derived classes
that make small refinements on a common base class. We’ll discuss these
constructs more in Section 5.3.

5.2.6 Back to Dimensions of Complexity
We encountered two organizational patterns above. The first is called
Conway’s Law, which suggests that the code structure reflect the orga-
nizational structure. If all members of a development team are collocated
then product development has all the freedom it needs to put together the
best organization. The Lean Secret is based on getting everybody together,
but geographic distribution constrains our ability to do that. (As we’ll see
later, even when you do the ‘‘best’’ for a collocated team doesn’t necessarily
mean that the team or architecture are ‘‘ideal,’’ because most products have
built-in over-constrained problems.) If team members are geographically
separated it limits the organization’s ability to mix and match individuals
to teams. True team dynamics are found in true teams, and a true team is
a collocated group of seven plus or minus two people working together
under a common goal. In the end, Conway’s Law says that you should
evolve organizational structure and software structure together, but other
patterns also constrain team formation.

In another pattern we found that the organizational structure followed
geographic locations: one in New Jersey and one in China. That pattern is
Organization Follows Location (Coplien and Harrison 2004, p. 194).
That constrains the composition of true teams, since members of an ideal
team are all drawn from the same location. If we want to give each group
as much autonomy over its architectural units as possible in the long term,
then we create architectural units that map onto the locations. Note that
these two organizational structures, and the resulting architectures, are
potentially in conflict. This is what we mean about complexity arising
from multiple ‘‘tops:’’ there is no single reasonable top-down (hierarchical)
partitioning that could satisfy both organizations. This is a form of over-
constrained problem.

What the System Is, Part 1: Lean Architecture 97

There is at least one more ‘‘top’’ that can reveal itself when selling
products into complex markets, and that is the structure of the market
itself. ElectroCard has a special client in France that wants a French
language interface. In theory, the software representing each chip in the
design needs to know how to display its signal names in French; the
overall command structure for partitioning and placement should also be
in French. Now we have a French product. Ideally, just from a practical
perspective, we would have a team dedicated to that product. Maybe
even more ideally, the team would be located in France, preferably in
one of the Rhine wine regions. This is yet another organizational pattern:
Organization Follows Market (Coplien and Harrison 2004, p. 197).

Each of these patterns has the power to shape the organization and,
therefore, the architecture. Yet we also want cross-functional teams that
bring together the talents and insights necessary to keep moving forward.
What, then, is the guiding light to a good architecture?

Consider Table 5-1. Assume that unless otherwise constrained by another
staffing policy, we try to create cross-functional teams. The chart looks at
consequences of multi-site development and how they relate to specific
architectural choices. To build a single, ‘‘clean’’ organization, and expect
optimal results, is unrealistic.

In the end, let the principles and common sense be your guides. You
should strive to encapsulate change, so look at typical or common changes
and count how many architectural boundaries each one would have to
cross, particularly at the module level. That is the same as the number of
teams that would have to coordinate with each other to make the change.
Don’t forget to count teams that work on the feature logic outside of the
domain code. If that number is worrisome for a common class of changes,
then seek another partitioning that encapsulates change better.

How many coordination relationships like this can you have before you
start to worry? All interactions that do not take place face-to-face are more
costly than face-to-face interactions. Even if there is a single coordination
between mutually remote locations, it is a potential architectural stum-
bling block. Practical coupling and cohesion are functions not only of the
properties of the code, but also of how the code maps onto programming
teams for maintenance. This leads to the surprising conclusion that, except
at the mechanical level, coupling and cohesion are subjective. You can’t
find them from the code alone, but need to include extrinsic organizational
and market perspectives as well.

Remember that if you have the freedom to staff teams (including teams at
different locations) however you want, much of this complexity vanishes.
Organizational freedom removes many of the constraints that arise when
trying to align the organization, the domains, and the markets into a single

98 Chapter 5

architectural structure. There is no single formula. Again: it’s all about the
principles of long-term local autonomy, and of common sense.

Table 5-1 Organizational (and therefore architectural) drivers.

Primary
Architectural
Structure

Pattern Positive
Consequence

Liability

Modules organized
by business domain

Each location is
staffed around a
business domain

Good
independence for
general
development

Special interests
(target markets)
may suffer

Each location is
staffed to support
some market

Very few – chances
for coordination
within a location
are random

General
development
requires heavy
coordination across
locations

Modules organized
around markets

Each location is
staffed around a
business domain

Very few – chances
for coordination
within a location
are random

Common
development
requires heavy
coordination across
locations

Each location is
staffed to support
some market

Great
responsiveness for
local markets

General
development
requires heavy
coordination

Modules organized
by solution domain
(programming
language, etc.)

Each location is
staffed around a
solution domain

Reduces need to
duplicate tools
across location

Just about
everything else

Each location is
staffed to support
some market

Very few – chances
for coordination
within a location
are random

Very few – chances
for coordination
within a location
are random

One common solution is to organize the architecture primarily by busi-
ness domain knowledge (remember Technique 6), and to build teams
around domain knowledge as well – no matter where they are located.
This leads to an organization where most of the coordination is localized
within individual domains, and the team members can coordinate with
each other within the same location and time zone. In addition to these
primary partitions, there can be additional partitions for each market that

What the System Is, Part 1: Lean Architecture 99

requires special focus. Those partitions are likely to have less than ideal
coupling to the domain-based partitions, but crosscutting techniques like
AOP (Aspect-Oriented Programming) (Ramnivas 2003) can help on the
technical side. In any case, these points of interference can architecturally
be made explicit as APIs.

Another benefit of this ideal organization is that geographically isolated
staff can work on the market-specific partitions for their region. You can
form groups around these market concerns and their realization in the
architecture. Such groups are commonly located close to markets that align
with geography. For example, a team could be placed in Japan to do the
localization for the Japanese market. That not only meets the architectural
objectives but also makes it easier to engage the key stakeholders for that
architectural concern: the targeted end users for that market.

Figure 5-1 is a stylized example of how you might map the architecture
onto an existing organization. It looks ahead to the next step: dividing the
subsystems into modules according to domains. There are development
teams in North and South America, as well as in Japan. The domains are
divided among the American teams subject to the rule that no domain has
strong coupling to more than one location. In South America two different
teams work on Domain Module 2. This isn’t ideal because it requires
coordination between the two South American teams. However, because
of the Lean Secret and because the teams are collocated we can quickly
bring together the right people to address any coordination issues that
arise in Domain Module 2.

Domain
Module 5

Domain
Module 1

Domain
Module 2

Domain
Module 3

Custom
Module A

Figure 5-1 A typical organization-to-architecture mapping.

100 Chapter 5

5.2.7 Architecture and Culture
Later in this chapter we’ll cover mental models, domain dictionaries, and
programming language. Each of these can be viewed as a trapping of
culture. Each programming language has its own culture. Each company is
unique in its culture. Each nation and locale obviously has its own culture.

One reason for the Lean approach of everybody, all together, from early on is
to develop understanding across these boundaries. We don’t say this out of
any pretense that it will be a foundation of world peace (though every little
bit helps). The cold, stark business reality is that it affects project success.

Different cultures not only have different words for business concepts,
but may also have different views of what constitutes a given business.
While writing this book we had many arguments about what a Savings
Account and a Checking Account were: a concept familiar to most
Americans (at least to most Americans over 30) but relatively foreign in
the Nordic countries.

Some of these differences go deep into value systems. For example, there
is an architectural pattern Fresh Work Before Stale (Hanmer 2007) whose
essence is that a busy telecommunications system should give preference
to the most recent requests for service over those that were in line first, if
there isn’t enough capacity to handle all requests. The pattern came from
North American telecom architecture. A European might cry (and several
have): That violates fairness!

If you work in a multinational market or have a multinational work
force – or even a multiethnic work force – be attentive to these differences.
The organizational pattern Diverse Groups (Coplien and Harrison 2004,
p. 135–136) values heterogeneous groups for many of the same reasons
that Lean and Scrum advocate cross-functional teams.

5.2.8 Wrap-Up on Conway’s Law
It isn’t enough to just say that one will optimize ROI and to quickly make a
choice based on that: it’s important to understand the dynamics of product
evolution and to use that understanding to drive the architectural form.
That’s embracing change!

5.3 The Second Design Step:
Selecting a Design Style

Attention, nerds! We’re finally past all that people stuff and we’re going
to start using the kind of vocabulary that you might have expected from

What the System Is, Part 1: Lean Architecture 101

an architecture book, or a book on Agile development – which can per-
haps whimsically be portrayed as the nerds’ revenge. This section is about
selecting the right design technique and about using it to identify the
right modules. By ‘‘design technique’’ we mean design or programming
paradigm: object-oriented, procedural, generic and generative program-
ming, databases, and the like.

Most nerds will think of this activity as selecting a technology. However,
object-orientation isn’t really a technology, nor are most of the other design
approaches discussed here or in the broader literature. (For a suitable defi-
nition of technology, these things are technology. Alan Kay says that we use
the term ‘‘technology’’ for anything that was invented since we were born,
and Danny Hillis says that we use it for ‘‘the stuff that doesn’t really work
yet’’ (Brand 1999, p. 16)). Perhaps more in the spirit of classical architecture
we use the term ‘‘design style’’ instead. In computer-ese we use the term
paradigm. A computing paradigm is a set of rules and tools that relate to
patterning or modeling. To select a design style is to select a paradigm.

From an Agile perspective in particular, much of design and architecture
is about communication and, in part, the expressiveness of the code. The
code should be able to capture and express the mental model of the end
user and other stakeholders such as domain experts. The nice thing about
paradigms is that we have programming languages whose syntax and
semantics express their organizing power, and we can seek the right set
of semantics to fit stakeholder concepts. That means choosing the right
programming language feature and, sometimes, the right programming
language or other ‘‘technology.’’ We choose the design style that best fits
the situation.

Almost every software paradigm has two important features. First, each
one is a way to group related items by commonality. Our minds are good
at noticing patterns of commonality among things in our environment,
and software paradigms cater to that instinct and its place in language.
What is in your hands? A book. It happens to be a particular book with a
particular ISBN and a particular history, made of a particular set of atoms
unlike any other book in the world. But for the sake of communication
we call it ‘‘a book,’’ going into the differentiating characteristics when
in a discourse about more than one of them. Architecture is both about
these commonalities and the way in which items can vary. Paradigms are
configurations of recurring commonalities and variations, and they serve
us well to describe architectures.

Second, most paradigms encapsulate frequent changes. This is true
even for the procedural paradigm, which gets a bad rap for coupling
and cohesion. On old UNIX systems, the sort(3) library function
actually comprised three algorithms. It selected the proper internal

102 Chapter 5

variant according to properties of the data it was given. The maintainer
of sort might have added a fourth, but because the sort function
encapsulated it, we wouldn’t have noticed. That keeps the overall
form – the architecture – stable even under a substantial change. An Agile
approach to architecture responds to change by encapsulating it. So, in
summary, paradigms group items by commonality, and shape modules
that encapsulate classes of frequent changes.

5.3.1 Contrasting Structuring with Partitioning
A naı̈ve view of structuring is as the next step of breaking down subsystems
into smaller parts. To a degree that is true. We said that a good subsystem
partitioning makes change easier by localizing common changes. The
same is true at the structuring level. A paradigm helps us break down
subsystems into modules according to rules of organization and grouping
based on commonality. If any one of the major common kinds of change
arises in a modular system, then ideally all of the work to accommodate
that change can take place within a single module. A system has many
modules, each one of which accommodates a common class of change or
growth in requirements. This is, in fact, Parnas’ original definition of the
term module: that it hides a ‘‘design secret’’ that can be changed internally
without instigating a ripple effect across the rest of the code (Parnas 1978).
Change is how we generate new revenues; if we can keep the cost of
change low, we increase our profitability. Localizing change lowers cost
and makes programming more fun.

Also, as is true for subsystems, we can use coupling and cohesion as a
rule of thumb for how well the module structure is serving us. As with sub-
systems, this must be a dynamic model that considers how well the system
handles change – that is, what fraction of changes can be handled locally.

However, there are important differences between the gross partitioning
into subsystems and the finer partitioning into modules that go beyond dif-
ference in scale. Subsystems are largely administrative, while modules have
a necessary relationship to business semantics. Modules are the most direct
expression of the end user’s mental model of the entities in their business world.

Most of the time, change within a module doesn’t mean that we throw
the whole module away and replace it with another one. In fact, major
parts of good modules stay constant over time. So each module is a mixture
of stuff that changes a lot, and stuff that stays the same a lot. There can be
many loci of change in a system – i.e., many modules – at multiple levels
of granularity.

At the very top level of the system, the what-the-system-does software
structure changes much more often than the what-the-system-is structure.
That is our top level of classification, or partitioning (Technique 1). At the

What the System Is, Part 1: Lean Architecture 103

next level we partition according to our intuition and experience of how
subsystems will map onto birds of a feather. It is a rather unsophisticated
process, and though we analyzed it formally from a business perspective
in Section 5.2, it most often follows intuition and domain insight. It
is taking the things in our business world and just putting them in
baskets, creating new baskets as needed. It is simple classification with no
transformation. Partitioning is largely an act of analysis; the only design in
partitioning comes from the decision of what classification scheme to use.
But there are elements of design here, too, since we are forging boundaries
that will last into the implementation. Almost by definition, whatever
affects the implementation (the solution) entails design. As a practical
issue analysis can never be clinically separated from design. Just as a
building architect knows his or her building materials, a software architect
knows the strengths and weaknesses of the programming languages and
environments that lay ahead.

Structuring refines these partitions according to some design style,
or, in other words, according to some paradigm. Within each partition
we analyze what aspects change frequently and what aspects are more
stable over time. Consider our ElectroCard example, where we have made
placement to be one of the domains. The placement group in China may find
that the algorithms have a rhythm that remains constant over time, except
for one set of algorithms that are sensitive to the hardware technology
being used (they support several different chip packaging technologies
including dual in-line pin chips (DIP chips), surface mount components,
discrete components, and others). In each of these cases, we start with
the result of a business classification and end with an additional level of
separation between stable parts and changing parts.

Structuring moves from what is in the business to how we will structure
it in the product. We are now beyond analysis alone and firmly in design.
Domain experts have a key role, since much of their experience relates
to how such structuring was done in the past. Using the principle of
‘‘yesterday’s weather,’’ the design we have used in the past is often as
good or better than what we can come up with now. (Grandpa Harry
used to say that it was more reliable to predict that today’s weather
would continue tomorrow than it was to read the weather forecast in the
newspaper.) We are still in contact with the end users so we can choose a
paradigm that expresses the domain in a way that even they might find
natural. We have the businesspeople on the team because issues of scope
inevitably arise. Customers may want to configure certain domains for
inclusion or exclusion from the product for specific markets. Programmers
will soon find ways to express these forms in the code, so solution domain
expertise becomes crucial at this point.

104 Chapter 5

5.3.2 The Fundamentals of Style:
Commonality and Variation

Is time long or is it wide?

Laurie Anderson quoted in The Clock of the Long Now, p. 107.

The structuring tasks in design build on the deepest building blocks
of human cognition: being able to distinguish what is common from
what changes.

To a domain analysis person or someone working on software families,
commonality is something that exists at any point in time across software
modules, and we use the term invariant to describe similarities across
modules, and variation to describe how they differ. Simple object-oriented
design is a good example: a base class captures what is common to all the
modules (all the derived classes) and we capture the changes in the derived
classes themselves. We can create a derived class object by ‘‘changing’’ the
structure of a base class object according to the modifications explicit in the
derived class. (Here, by derived class, we mean its source code – the part that
contains only the delta from the base class. That’s how most object-oriented
programming languages express such differences.) The Lean angle on this
is that we should plan how much variation of each type to tolerate in a
system over its lifetime.

However, to an Agilist, change is something that happens to a given
artifact (such as object structure) over time. To be common over time is to
(tend to) be stable over time. We use the terms evolution, change in version,
or sometimes just change to describe the differences over time. Again,
strangely enough, we can use the same example as before: in a style of
object-oriented programming called programming by difference, Bertrand
Meyer points out that you can evolve programs over time largely through
subclassing (Meyer 1994, ch. 14).

In the end, it doesn’t matter: change is change, and we have programming
languages and other tools that raise the expression of change to the level of
objects and classes that encourage and enable us to use everyday business
vocabulary instead of computer-ese. We can call a SavingsAccount a
SavingsAccount, and we can find it in the code. We can talk about the
differences between SavingsAccounts and CheckingAccounts in the code
as well. If it is architecturally important to talk about the difference between
the SavingsAccount in the 2010 release and the SavingsAccount after the
new banking laws passed in 2011, then we can express that in the code too.
To the degree that domain experts anticipate such changes, such changes

What the System Is, Part 1: Lean Architecture 105

can be modularized. In this case, maybe we can use class derivation to
express all of these changes well.

There is a common misconception (based on a grain of truth) that
commonality is the purview of data structure and of what-the-system-is,
and that variation lives in the algorithms and functions of what-the-system-
does. This would be literally true if the data were invisible to the market,
and if all we visibly sold was function. How often were you told in your
programming class that you should think of a Shape object in terms of
its behaviors, and that the data structure was left to the choice of the
implementer? And that the important attribute that changed from Shape
to Shape was the methods (e.g. for rotation, which is different for a circle
than for a rectangle)? If this were literally true, we could divide the design
between these two worlds (as we already have in Section 5.2.1) and we’d
be done with architecture.

It may be that data structures are more stable over time than algorithms,
but data structures evolve as well. We probably use different internal
representations for circles than for rectangles. Architectures should encap-
sulate both kinds changes in a way that preserves the overall form as much
as possible. Most of what we discuss in this chapter aims toward that
objective: allowing changes to what-the-system-is without upsetting the
architectural form. You know this in several common guises: for example,
class boundaries and inheritance can hide data changes from a user of the
base class API.

5.3.3 Starting with Tacit Commonality and Variation
Pretend that we had a magic, universal paradigm, one that would allow us
to create modules that would always encapsulate change as well as possible.
What would that paradigm look like? It would capture the commonalities
inside of a module and would allow the interface of the module to express
the variations. Unfortunately, the world is a complex and sometimes messy
place and we don’t quite have such a single magic paradigm. The closest
thing we have is classification by commonality and variation.

The good news is that we can tap into such a magic paradigm, albeit
in an indirect way. When we look for the basic objects that users care
about, we don’t ask them to group things according to specific attributes of
commonality and variation, but we follow business intuition. What drives
this intuition is the way we think about associations between things in the
world. Our brain is good at finding patterns (in the vernacular sense of the
word, not the software design sense, though the two are related). A pattern

106 Chapter 5

in our mind captures common properties of a recurring thing along with
some understanding of the variation within the recurrence. You know ice
cream as ice cream because of its temperature and texture – that’s what
makes ice cream ice cream. However, chocolate and pistachio ice cream
taste very much different, and our mind still classifies both of them as ice
cream in spite of the fact that the primary end-user sense elicited by the
eating-ice cream use case – that of taste – would cause us to classify them
differently. Yet our mind captures the common pattern of ice cream being
basically creamy and cold, and tucks away information that different kinds
taste differently.

There is no universal, scientific approach to such partitioning. Classifi-
cation is at least partially based in culture. David Snowden often tells the
story about how people from different cultures classify cows, chickens, and
grass. Westerners will put cows and chickens together as subjects of human
consumption. Chinese will put cows and grass together in accordance with
their natural link in agriculture. In the end, you want to do this partitioning
on the basis of how the system will change over time. Often history is one
of the best predictors of the future.

Perhaps the most creative part of software design is to partition the
domain into units of decomposition that encapsulate change. These units
of decomposition (and later, of composition) are called modules. This
task requires a fine touch because this partitioning expresses so many
important design desiderata at once. First, each module should correspond
to the end users’ cognitive model of their world. Second, each module
should be as independent from the others as possible. Third, each module
should be cohesive. Fourth, Conway’s Law comes to bear: can you create
modules so that each one encapsulates the domain expertise of a single
team or a specific domain expert, so that it doesn’t take a village to raise
a module?

Because we can talk so explicitly about commonality and variation
in the software world, it would be nice to use the same tools in the
analysis world for the end user mental models. It would be nice to go
to end users and ask, ‘‘What things in your cognitive model line up well
along commonalities in data structure and have variation over time in the
algorithms that implement the services you envision for those things?’’ If
we can find consistent mappings from the end-user space to our software
paradigms, then we’ll get an architecture that works – that encapsulates
change well. Of course it doesn’t work that way. Ultimately we want to
get to those commonalities and variations in our architecture, but we don’t
start there.

Fortunately, culture and human experience are often kind to us and
provide a historic perspective on what works and what doesn’t. This knowl-
edge is in the heads of your subject matter experts, your domain experts.

What the System Is, Part 1: Lean Architecture 107

Technique 8

Allow the module partitioning to follow domain knowledge. Think
of domain knowledge as a timeless compression of the mental models
of end users and other stakeholders – mental models whose patterns
are tacitly driven by commonality and variation.

Experience shows that this partitioning best captures the invariant and
stable parts of the system. This isn’t something that formally can be proven.
On the other hand, it almost stands as a tautology: to be a domain means
to have the property of being invariant across your markets or stable over
time. In the end, a good architecture doesn’t reduce to computer science
principles, but to your ability to connect to the human end of your system
and to distill that knowledge as domain expertise.

Sometimes, you just can’t get the domain knowledge. Maybe it’s a green
field domain, or maybe you have a novice team. It happens. In that case,
we go back to the principles of Agile:

Technique 9

In the absence of domain knowledge, allow the module partitioning
to follow the end user cognitive model of the domain. For every user
‘‘notion’’ create a corresponding architectural notion.

The end user’s model of the moment, driven by current requirements,
may be blind to the bigger picture. It’s the nature of a modern project to
want the software to work now. The question is: how long is now? If you
don’t have domain knowledge, you are stuck with the end users’ sense
of immediacy. Even though we have separated out the what-the-system-is
part of the end user model from the domain model, the current feature
still colors how the end user sees the domain. If we form the architecture
around the end-user models of the moment, they are likely to change on
the next release or even next week, leading to rework. Even the best user
experience people can’t compensate for this shortsightedness.

The compensation must come from a historical perspective. Domain
knowledge integrates many past nows into a ‘‘long now’’ (Brand 1999).
That’s why it’s better to form modules around domain knowledge than
around the current end-user view. However, sometimes the end-user view
is all you have. This is particularly common for new features. Use domain

108 Chapter 5

knowledge when you can get it, and the current end-user mental model
when you can’t.

History and context are also part of the ‘‘long now.’’ You will buy
some software instead of building it. You may build on top of an existing
embedded base. These structures constrain the shape (the architecture) of
what you can fit around them. Another key tip is:

Technique 10

Mind the embedded base and other system artifacts that are destined
to be part of the end solution. Be mindful of how they might constrain
the system structure or decisions about the system structure.

5.3.4 Commonality, Variation, and Scope
A software system may have hundreds of millions of entities. For example,
a large business system may support tens of millions or hundreds of
millions of accounts. (Think of your national tax system as an example.)
Even though you may be a very productive programmer, you can’t write
that much code. So we use the commonality across these entities to compress
the design.

We noted in the introduction that people find architecture daunting,
partly because of such complexity. This complexity comes both from the
mass of data that we have, and from the intricacies of relationships between
the data. Architecture is about slicing away as much of the mass of data as
we can while maintaining the relationships. While compressing down the
mass of data, we want to retain its essence, or form.

There are two ways of extracting the essence of a thing or set of things.
The first is abstraction, which means to put aside some attributes of some
entity while retaining others. I can focus on the single most important
attributes or features and put aside the rest. The essence of Cyrano de
Bergerac is his nose (if we ignore his poetic talent). The essence of a savings
account, to the end user, is to deposit, and withdraw and get interest (if we
ignore how the actuaries view it).

The other alternative is to generalize the overall business characterization
of the thing or set of things. Generalization always takes place with
respect to some context – some set of shared assumptions. We get these
shared assumptions from culture or from deep knowledge of our business:
domain expertise. It is like abstraction because in fact I am throwing away
information – if a general description is more compact than the original,
something has to go! But what I remove from the description will be the

What the System Is, Part 1: Lean Architecture 109

tacit, non-distinguishing properties that anyone familiar with the domain
would take for granted. So, for example, if I’m generalizing the concept
of bicycle I don’t need to explicitly mention the property of having two
wheels. Such information is in fact encoded in the name itself: the prefix
bi- implies ‘‘two.’’ That is part of the business context, the assumptions its
stakeholders presumably share.

Aha: this ‘‘presumably’’ is a tricky part. One benefit of the everybody,
all together, from early on approach is that it encourages a culture to form.
Words take on shared meaning. You can help this process with a Domain
Dictionary, and we’ll talk more about that at the end of the chapter in
Section 5.4. The Domain Dictionary is a crutch: the desired end state is
that team members, including end users, can share terms of the trade on a
familiar basis.

Because the context lives on in domain knowledge, we lose little infor-
mation in generalizing this way; we do lose information while abstracting.
Too much computer science pedagogy these days emphasizes abstraction.
Richard Gabriel admonishes us about the dangers of abstraction in his clas-
sic essay, Abstraction Descant (Gabriel 1998, pp. 17–32). He points out that
the shared domain knowledge or cultural knowledge is a kind of ‘‘code,’’
and that generalizing this way is a form of compression that uses the domain
knowledge for the encoding and decoding. It is that compression, using
tacit shared information, that makes it compact.

Technique 11

Capture your initial architecture at the most compressed level of
expression that covers the scope of your business. Avoid abstracting or
discarding any priceless information that may give insight on the form.

Let’s look at a trivial example. Let us ask you to envision the interface
ComplexNumber in your head. Now consider the complex numbers (1, -1)
and (1, 1). Let’s say that I created objects of those two complex numbers,
gave them to you, and asked you to multiply one by the other to produce a
third. What is the result? You knew the answer without having to look at the
code of ComplexNumber, and without even having to know whether it used
an internal representation of (r, θ) or (real, imaginary). You probably used
your cultural knowledge, particularly if you are an engineer, to recognize
the shorthand form as indicating real and imaginary parts. And you used
your cultural knowledge of what a complex number is to do the math.

Compression is Lean, in part because it reduces the waste of writing down
information that is common knowledge to the business. Compression,

110 Chapter 5

again, ties closely to the role of domain expert. There is of course a great
danger here: that you have team members who aren’t on board to the
domain yet. There are no quick fixes, but keep the domain experts handy,
hiring expertise if necessary (see the pattern Domain Expertise In Roles,
Coplien and Harrison 2004, pp. 150–151) and let them bring new hires up
to speed (Day Care, Coplien and Harrison 2004, pp. 88–91), cross-train
(Developing In Pairs, Coplien and Harrison 2004, pp. 165–167), and keep
documentation on hand that teaches the core competencies of the business.

To compress effectively, you need a context, and the context is often
delineated by a business scope. Who determines the scope? This is a
business decision, and comes from the Business stakeholders (Section 3.2.2).
Scope is tricky. For the banking account example: are both savings and
checking accounts part of the same business? It depends how you view
them: do you group them as having enough commonality that you view
them as the same? Or do the variations over-power the commonalities
so that they are different? These insights in fact can lead to an even
higher-level partitioning:

Technique 12

In fact, the initial partitioning strives to create decoupled businesses
whose concerns can be separated from each other.

These businesses can of course cooperate with each other, use each other’s
services, or share large amounts of common code. So-called infrastructure
organizations can view other internal projects as end users, and can produce
a software artifact that is shared across several organizations.

There are, however, serious challenges with internal infrastructure orga-
nizations that serve multiple internal customers. It is difficult for the
internal vendor to make a product that is truly general and satisfies inter-
nal clients equally well, without giving into one of them at the expense of
others. It is complicated enough if all the internal clients agree to a standard
on a given date, but it is rare that such clients work together and rarer still
if their release schedules align. Because each internal client wants minor
changes timed to coincide with their release schedule, it complicates the
situation beyond belief for the vendor. If the internal business interfaces
are contractual rather than a multi-way Agile partnership, the enterprise
runs the risk of a critical-path internal client (or an 800-pound gorilla
external client) strong-arming the direction of the platform. If the gorilla
wins, everybody else loses. Partnerships like this usually (but not always)
rely on collocation of the vendor and consumer, so multi-site setups face a
further liability.

What the System Is, Part 1: Lean Architecture 111

Once you have done this high-level partitioning you can seek the top-
level, most compressed level of expression within each partition. That’s
your top-level architecture. The fact is that we compress all the time: we
don’t take the design all the way to machine code, and register transfers,
and bus design, and hardware architecture, and gate level design, and
solid state design of the transistors, nor to the electrons and holes across
a PN junction in a chip, nor down to the Fermi levels of the electrons in
the silicon and isotope atoms of the devices. We cut it off at some level.
You might argue that this is abstraction; fair enough, we won’t take the
word away from you. We don’t view it as abstraction because, in fact, all
that stuff is there already. We compress our understanding of something
already built, something that exists, to use it: the dangers in doing so are
minor. If arguments arise about a particular detail, the artifact itself is the
oracle we can consult for resolution. Domain experts can help here, too.
If we abstract our understanding of some domain and use the resulting
information to build something that does not yet exist, we are likely to
miss something important. That will hurt evolution. To embrace change
requires the discipline of understanding what is likely to change, and what
will likely remain stable.

In summary, we deal with complexity in three ways. We use partitioning
to understand a complex system a piece at a time; partitioning groups
things by their common attributes. We’ve already addressed partitioning
in Section 5.2. We understand things that already exist by abstracting; we
try to avoid that in architecture because the artifact doesn’t exist yet. And
last, we use compression to generalize complex systems under construction,
building on common domain knowledge and on the common properties of
the concept under discussion. This information in hand, we are one step
closer to making it explicit in the code.

5.3.5 Making Commonalities and Variations Explicit
A user usually has more than one flavor of a concept in mind at once.
A bank Account Holder may talk about accounts, but in fact might think
concretely of savings and checking accounts. ElectroCard clients may
think of printed-circuit cards, but in fact there are different kinds of cards:
surface-mount technology, discrete components, and others. In all of these
cases, the differences matter. However, the differences are qualitatively
different than the differences between domains. The distinguishing factor
is that these elements are bound by some invariance. Savings and checking
accounts have remarkably similar places in the architecture and remarkably
similar behaviors (reporting a balance, making a deposit, etc.) All printed
circuit cards share basic principles of routing.

112 Chapter 5

Each account, and each routing algorithm, is a module in its own
right, yet these modules have a special relationship to each other: their
commonalities. Programming languages are good at expressing invariants
like these, as well as the variations.

To the end user with a long view, and also to the programmer, we can
view change over time the same way. We have today’s savings account with
its relatively stable form, but we also have its evolution into tomorrow’s
savings account that reflects changes in the way we give interest to the
customer. Eventually, we might have both in the system at once and give
end user a selection of interest-bearing accounts. Over time we have a
succession of modules that maintain a large degree of stability.

We use the term commonality both for the invariance across concurrent
options and for stability over time. All of the variant modules are members
of the same domain. So we can talk about a domain of accounts that includes
savings and checking accounts – both today’s and tomorrow’s. We can talk
about a domain of routing algorithms that includes Hightower routing and
Lee routing – both for today’s chip-based boards and tomorrow’s surface-
mount boards. These domains are the same whether they are driven by the
end-user model or by domain expertise. It’s just that we’re broadening our
scope a little bit.

The interesting question of what-the-system-is architecture is: how are
these modules similar? Said another way: what is their commonality? We
could answer the question in business terms, as we did in the preceding
paragraph. Instead, we will start to think about how we will express
these commonalities in code. This transformation from business concep-
tualization, to program conceptualization, might best be called design. It
is a (probably tacit) activity you already do during design, whether using
procedural design or object-oriented design or some other approach.

Commonality Categories

Before jumping to procedures and objects and templates and other
paradigms, we’re going to keep it simple at first. We also want to distance
ourselves from programming language and other premature implementa-
tion biases. We look at the basic building blocks of form as computing has
understood them for decades. We call them commonality categories (Coplien
1998). These building blocks are:

■ Behaviors, often communicated as names (external behavior: e.g., to
rotate (a name) or move (another name) a Shape)

■ Algorithms (the sequence implementing the behavior: e.g., the
algorithm for moving or rotating a shape)

■ State

What the System Is, Part 1: Lean Architecture 113

■ Data structure
■ Types (in the vernacular programming language sense)

That’s just about it. These are the criteria that we seem to use when
grouping software. We tend to look for the ways in which one of these
properties stands out as a common feature across concepts in our mental
models, and then form a partitioning or grouping around that common-
ality. We also look for how these same properties delineate individual
concepts in our groupings.

This list is important because it seems to characterize the groupings
that Von Neumann programming languages express. (By Von Neumann
languages, we mean those that tend to express the form of software written
in some Von Neumann computational model. This includes paradigms
such as the procedural paradigm, the object paradigm, and modular
programming, but is less applicable to rule-based programming, or the
functional programming style of spreadsheets or of Scala’s methods, for
example.) Most popular programming languages of the past 50 years have
drawn on this list for the kinds of commonality and variation that they
express. It is a remarkably small list. In some sense, this list forms a simple,
‘‘universal paradigm’’ of design. If we can identify the commonalities and
variations in the domain model and end-user model, we can use this list as
a powerful tool for translation to the code.

Let’s illustrate with some examples. Think again of savings and checking
accounts. To the end user, they are all the same underneath – it’s just money.
The end user doesn’t care very much about where the money is kept. The
programmer using a SavingsAccount object or a CheckingAccount object
doesn’t care how the objects represent the money: whether they hold the
amount as a data field or whether they partner with a set of transaction
auditing objects to keep track of it. To the end user, it’s an amount; to the
programmer, this suggests a commonality in data structure. The state of that
data structure varies over time. How do savings and checking accounts
vary? What would make me choose one over the other is behavior. It is
clumsier to withdraw (the name of a behavior) from a savings account than
a checking account: there are different use cases, or algorithms, elicited in
this same general behavior. Most savings accounts draw interest; many
checking accounts don’t. Most checking accounts have annual or per-use
fees; savings accounts don’t. Those are variations, and each one can be
exemplified in a use case scenario. They are behaviors.

So you’re in the banking business. You want to divide your business into
autonomous segments. Do checking and savings have enough in common
that they belong together in the same business? I compress checking and
savings accounts into a notion called Consumer Account and conclude:
yes, I want a line of business called Consumer Banking. Of course, I can’t

114 Chapter 5

do this on the basis of two account types alone or even on the basis of
accounts alone, but the concept generalizes. Alternatively, you can start
by asserting that I have a line of business called Consumer Banking (a
scope decision made by the business) and then ask the question of how to
organize these account types into an architecture. The answer is: according
to some paradigm that can express commonality in structure and variation in state
of the data and in the behaviors associated with the data.

How about our guys at ElectroCard? They have two basic routing
algorithms based on the classic Lee algorithm and the Hightower algorithm.
These algorithms take a graph data structure as input and produce a multi-
layer topology as output. (Think of the output as a geographic map of
lands and seas that will be used to manufacture a circuit card. The lands
(yes, they really use that term) will be manufactured in copper to connect
electronic devices together, and the seas are a kind of plastic that separates
the copper areas from each other.) The algorithms both have the same
business behavior: they route lands on a circuit board. However, the Lee
algorithm and Hightower algorithms are different. Furthermore, there are
more refined differences pertaining to the differences in board technology
(surface mount versus DIPs), but these are differences in behavior.

In both cases, we can use this knowledge to refine our understanding of
partitioning and to choose suitable paradigms. We’ll talk about that in the
next two sections.

Next Steps

Sometimes, in a complex domain, even the domain experts may not agree
on what the most fundamental organizing modules are! We talk a bit about
that in Section 6.3 later on. But, first, let’s get into more of the nitty-gritty
of structuring.

5.3.6 The Most Common Style: Object Orientation
Object orientation has probably been the dominant design style (paradigm)
on the planet for the past 15 or 20 years. That’s a long time in Internet years.
What makes it so enduring? Arguments abound. One of the often-heard
arguments in the 1980s was that the object paradigm is ‘‘natural’’ for the
way human beings think. A slightly more cynical view is that people
associate computing with the Internet, the Internet with Java, and Java
with object orientation. Another is that C++ rode the wave of the then-
ubiquitous C language and for reasons of fashion led to the widespread
use of the term ‘‘object-oriented.’’

Perhaps the most persuasive arguments come from the direct manip-
ulation metaphor. The Smalltalk programming language was taking root

What the System Is, Part 1: Lean Architecture 115

at Xerox’s Palo Alto Research Center (PARC) laboratory in the same era
that interactive interfaces were coming into vogue there, and about the
same time that Doug Englebart invented the mouse. Dahl and Nygaard,
who invented object-oriented programming in their Simula 67 program-
ming language, had the notion that objects should reflect the end user
mental model. The object-oriented Smalltalk people wanted to extend that
notion to the user interface in a way that the end user had the experi-
ence of directly manipulating the objects of their domain – objects that
had a living representation or kind of proxy living in the memory of
the machine. The end user should have the feeling of manipulating the
objects directly. Brenda Laurel powerfully explores this metaphor in her
book, Computers as Theatre (Laurel 1993). The point is that there is a long
tradition not only in object orientation, but also in interactive computing,
of linking together the end user mental model with the structures in
the software.

In the end, we don’t care which of these rationales is the ‘‘right’’ one. They
all ring true and, in any case, object orientation dominates contemporary
interactive software. So much for the why of object orientation. But next, . . .

Just What is Object Orientation?

This has been a much-debated question with quite a few final answers.
Object-oriented programming started with the Simula 67 programming
language. Its inventors, Ole Dahl and Kristin Nygaard, viewed it as a way
to capture the end user’s mental model in the code. Such foundations are
ideal for system simulations, which was what Simula was designed for.
The vision of Dahl and Nygaard bridged the gap between the user world
and the programmer world.

In 1987, one of main organs of object orientation – the ACM OOPSLA
conference – published a ‘‘treaty’’ that unified competing definitions for
object orientation at the time. The paper was called ‘‘The Treaty of Orlando’’
after the OOPSLA venue where the discussions behind the paper had
taken place (Stein, Lieberman, and Ungar 1989). The paper defines object
orientation mainly from the perspective of substitutability, which can be
achieved using a number of programming mechanisms such as templates
(the idea that a class keeps all of its objects consistent at some level) and
empathy (which is more applicable to classless languages like self, where
two objects share a relationship analogous to the subclass relationship of
class-ful languages). There is an important concept lurking here, which
is the introduction of the notion of class into the design space, which
we’ll revisit numerous times in this book. The object view is the Agile,
end-user-centric view; often, the programmers have a class view of the
same architecture.

116 Chapter 5

If we view the current activity (of Section 5.3) as ‘‘technology selection,’’
then we view object orientation as a ‘‘technology.’’ We want to know
when object-orientation is the right match for the domain model or end-
user mental model. There should be a good match if both express the
same commonality and variation. If the domain model visualizes market
segment differentiation or variation over time as requiring changes to
algorithms, without having to modify the existing data structures, then the
object paradigm may be a good fit.

You know obvious examples from your basic education in object orienta-
tion. The perfunctory OO example of geometric shapes – circles, rectangles,
and squares – is based on a set of variants that share common data
members (such as their center and angle of rotation) and that vary in
the algorithms that implement behaviors such as rotation, scaling, and
area computation. It is unlikely that you thought of geometric shapes
in terms of this derivation from commonality and variation. But the
analysis works well.

More often than not, the modules in Agile programs end at the same
place: object-oriented programming. In fact:

Technique 13

Most domains in simple, interactive applications lead to modules that
are implemented using object-based or object-oriented programming.
This is particularly true for entities that the program presents on an
interactive interface for direct manipulation by users.

In a general sense the end user is himself or herself one of the objects in
the system. We have yet to investigate other key architectural components
that tie together the wetware of the end user with the software written by
the designer. We’ll do that with the interaction framework called Model-
View-Controller-User (emphasizing that the User is also an object – in
fact, the most important one). We implement Model-View-Controller-User
with the familiar architectural pattern Model-View-Controller, or MVC for
short. That leads us to another important technique:

Technique 14

The object structures in the what-the-system-is part of the architecture
will become Models in a Model-View-Controller(-User) architecture.

What the System Is, Part 1: Lean Architecture 117

We’ll cover that idea more in Chapter 8 and Chapter 9.
As we hinted at the beginning of the chapter, it is important to distinguish

between classes and objects. End users conceptualize the world in objects,
whereas programmers are frequently stuck using programming constructs
called classes. If we look solely at commonality and variation – and partic-
ularly the commonality of data structure and behavior and the variation of
algorithm – the only difference between objects and classes is that groups
of otherwise similar objects can vary in their state and identity. We’ll see
later that this simplistic model of object orientation doesn’t fit the end user
model of the world as well as it could because we’re missing the notion
of role: objects play roles according to what’s going on at the time. This
‘‘going on at the time’’ necessarily evokes system dynamics, and we can’t
express anything that dynamic in anything as static as a class. However,
that knowledge lives in the what-the-system-does part of the system, and
classes serve us just fine to express what the system is (at least when
domain analysis points us in the direction of the object paradigm).

So far we’ve focused only on what the system is; we also must accom-
modate what the system does, which will be the topic of Chapter 7, Chapter
8 and Chapter 9. Because of Technique 14, most the remaining material in
this book will assume that the object paradigm drives the primary shape
of the what-the-system-is architecture: that’s where much of the leverage
comes from in an Agile system.

In the mean time, you shouldn’t take it for granted that everything will
be object-oriented. Take our ElectroCard case as an example. In the next
section we investigate the more general approach to selecting paradigms.

5.3.7 Other Styles within the Von Neumann World
As introduced in the previous section, object orientation is the prevalent
paradigm in Agile projects. Even in Agile projects there is software that
doesn’t naturally align to the Agile values of frequent change or of close
connection to the end user or customer, but you need it to support your
business.

Because these bits of software are often out-of-sight and out-of-mind to
the end user, you’ll need to learn about them from your domain experts. The
term ‘‘domain expert’’ usually conjures up an image of a businessperson or
of a problem domain expert. Solution domain experts should be particularly
high on your list both for their insight into the necessary supporting
domains and for their knowledge of what design styles are most suitable
for them. As is true of most software architecture (and of architecture in
general), history, taste, and experience are excellent guides. Architecture is
more art than science and it’s important to defer to people and interactions
over processes and tools in setting your architectural forms.

118 Chapter 5

Nonetheless, knowledge of commonality and variation help shape the
architecture. You can use them to justify the selection of a given paradigm
or design style in your code commentary or architecture documentation.
You can use them to guide your exploration of new domains or of the cost
of bending an area of your architecture to fit a new market. Most important,
the split between what is common and stable, and what is variable and
changing, supports the central role of architecture in embracing change.
Analyzing the commonalities and variations can help keep your team
members collectively honest as they choose paradigms, design styles, tools
and programming languages to achieve objects for maintainability.

Table 5-2 shows common configurations of commonality and variation
that easily can be expressed in the C++ programming language. Note that
in addition to the commonality categories (function, name, data structure,
etc.) we also take binding time and instantiation into account. These
indicators together suggest unique programming language features that
are well suited to express the form of the business domain.

Note the very last row of the table: if we have commonality in related
operations, and potentially in at least some of the data structure, with
variation in algorithm and data structure (and of course in the state
of the data) with run-time binding and possible instantiation, you use
inheritance with virtual functions – the C++ way to implement object-
oriented programming.

Table 5-3 shows the analogous relationships for C#. It isn’t our goal here
to help you formalize your architectural decision process. Perhaps these
tables can support or inform your common sense. More importantly, we
want to demonstrate that architectural decisions must take the solution
domain into account. Just as a builder or architect takes building materials
into account while building a house, so should software designers take
paradigms into account when shaping the initial forms of a program.

These tables can help inform a process of domain analysis that establishes
the key modules in a system, more or less according to these activities:

1. Group the entities of your problem space into sets of things that
‘‘belong together’’ from the perspective of form and which reflect a
historically distinct area of the business. Each such grouping is a
domain, and its members may form a family.

2. For each set, establish the main property that is common across its
elements, and find the commonality category for that property.

3. Also establish the main way in which the members of each set vary
and establish the commonality category for that variation.

4. Use the two commonality categories, together with a table such as in
Table 5-1 or Table 5-2, to establish a candidate design paradigm for
each set.

What the System Is, Part 1: Lean Architecture 119

Table 5-2 Commonalities and variations for C++ language features.

Commonality Variability Binding
Time

Instantiation C++ Feature

Function Name
and Semantics

Anything other
than algorithm
structure

Source N/a Template

Fine algorithm Compile N/a #ifdef

Fine or gross
algorithm

Compile N/a Overloading

Data Structure Value of state Run time Yes struct, simple
types

A small set of
values

Run time Yes enum

Types, values and
state

Source Yes Templates

Related
Operations and
Some Structure

Value of state Source No Module

Value of state Source Yes struct, class
(object-based)

Data structure and
state

Compile Optional Inheritance

Algorithm, data
structure and state

Run Optional Inheritance with
Virtual Functions
(object-oriented)

Some sets won’t naturally lead to the creation of families; use your
experience and common sense. In fact, most of this process is common
sense, and the above steps are just inspiration and encouragement. See
Coplien (1998) for a more comprehensive description of this approach to
domain analysis.

If we choose our paradigm carefully then it is easy to find where to
make the kinds of changes that our analysis anticipated. In the object
paradigm, this might mean changing the behavior of a method. The
domain model is said to have parameters of variation, and by associating the
right code (algorithm, class, value, etc.) with that parameter of variation
we can generate different entities in the domain. Members of a domain
are sometimes said to form a family, and the parameters of variation are
like genes that we can turn on and off in the family’s genetic code. Each
complete set of parameters defines an individual family member. When we
reduce the domain to code, the parameters of variation should be explicit.

120 Chapter 5

Table 5-3 Commonalities and variations for C# language features.

Commonality Variability Binding
Time

Instantiation C# Feature

Function Name
and Semantics
(must be within a
class scope)

Anything other
than algorithm
structure

Source N/a Generic

Fine algorithm Compile N/a Tag parameters

Fine or gross
algorithm

Compile N/a Overloading

Data Structure Value of state Run time Yes struct, simple
types

A small set of
values

Run time Yes enum

(class) Types,
values and state

Source Yes Generic (but no
operators)

Related
Operations and
Some Structure

Value of state Source No Static class

Value of state Source Yes struct, class

Data Structure
and state

Compile Optional Inheritance

Algorithm,data
structure and
state

Compile Optional Inheritance

Run Optional Virtual functions

In the object paradigm, this might mean adding a derived class with a
modified method. For generics or generative programming, it may mean
changing a template parameter.

In this section we have overviewed domain analysis suitable to Lean
architecture and Agile construction. Again, if you want to explore these
ideas in more depth, see either Coplien (1998) or Evans (2003).

5.3.8 Domain-Specific Languages
and Application Generators
So far we have discussed how to apply the results of commonality-
and-variation-based domain analysis to a design using general-purpose
languages. Some of the source code remains relatively stable, while the
parameters of variation allow small changes, or provide well-defined hooks

What the System Is, Part 1: Lean Architecture 121

that connect with programmer-supplied customization code. Another
approach to realizing a domain analysis is to create a first-class language
that expresses the parameters of variation – not in some general-purpose
syntax, but with the syntax and semantics of the business itself. Such a
language is called an application-oriented language or domain-specific language.

One of the original goals of domain engineering was to provide domain-
specific languages that perfectly capture business semantics. The term
‘‘domain-specific language’’ (DSL) in the 1980s and 1990s meant a language
designed from the ground up to support programming in a fairly narrow
domain. More recently, the term has been co-opted to mean any domain-
focused programming effort embedded in a general-purpose language. It
pays to survey this landscape a bit, and to consider the place of DSLs in
your architecture.

The State of the Art in DSLs

It may be that the new association for the name is a reaction to the relative
failure of the old one. True domain-specific languages are not very Agile
because they encode commonalities and variations in a narrow, concrete
expression of the business form. If the language is not perfectly designed,
its lack of general-purpose programming features makes it difficult for the
programmer to accommodate missing business concepts. Furthermore, if
the domain evolves then the language must evolve with it – potentially
leaving the previously written code base obsolete. There are a few efforts
that have had the good fortune to succeed, but there have also been
countless failures. The usual failure mode is that the language becomes
brittle or awkward after a period of about five years. On the Øredev 2008
panel on domain-driven design, the panelists (Jim Coplien, Eric Evans,
Kevlin Henney, and Randy Stafford) agreed that it is still premature to think
of domain-specific languages as reliable production tools (Øredev 2008).

There are, however, notable broad successes. Parser generators like yacc
and bison are good examples. There is promise in tools such as antlr (Parr
2007) to reduce a well-designed language to a development environment.
However, the challenge of designing a good language remains large.

There are other techniques that are related to the modern definition
of DSLs and which have had moderate success in niche areas. One of
these is generative programming, which raised the bar for embedding
domain semantics in a general-purpose language in 2000 (Eisenecker and
Czarnecki 2000).

DSLs’ Place in Architecture

A DSL smooths the interface between the programmer and the code that
he or she is writing. Unless the DSL is specifically designed to tie together

122 Chapter 5

architectural components in a general way (such as CORBA’S Interface
Definition Language) the DSL doesn’t have much benefit for capturing
the relationship of its domain to the rest of the software in the system.
This latter concern is our dominant one in this chapter because we are
concerned with managing the long-term interactions between domains,
assuming that changes within a domain are encapsulated. A DSL provides
the encapsulation (within the code provided by the domain engineering
environment).

That means that for each DSL, you need to define an interface between
the code produced by the domain engineering environment and the
interfaces to the rest of the domains. The rest of the system should
interface to the DSL through a single, relatively static interface instead of
interfacing directly with the generated code – that’s just basic attentiveness
to coupling and cohesion.

Technique 15

Provide an API to the code generated from a DSL for use by the rest
of the architecture.

Because you will not be managing the changes to the domain at that
interface, the interface will probably not be built as the result of any long-
term analysis of commonality and variation. Let common sense rule. If it
makes sense for this interface to be a class, make it a class. If it makes sense
for it to be a function, make it a function. Many DSL environments pre-
define these interfaces: for example, yacc uses a combination of macros (for
declaring the types of parse tree nodes and lexical tokens) and procedural
interfaces APIs (for starting the parser and determining success or failure
of the parse). Any other needed interface is up to the programmer.

5.3.9 Codified Forms: Pattern Languages
A pattern language is a collection of structures, called patterns, that includes
rules for how they can be composed into a system. Individual patterns are
elements of form that encapsulate design tradeoffs called forces, much as
modules encapsulate the relationships between implementation procedures
and data.

Patterns work best for incremental program design and construction with
feedback. The designer applies one at a time according to need. However,
the ordering is important. Patterns are collected together according to their
precedence relationships in the design process. Each pattern makes sense

What the System Is, Part 1: Lean Architecture 123

only in a certain context, so a given pattern can be applied only if the
patterns that were applied earlier create a context in which this one can
be applied. This set of pattern linkages forms a grammar of sorts, with
each pattern being a word in the grammar and the relationships between
them guiding the productions. A collection of patterns related in this way
is called a pattern language. A pattern language is in fact an architectural
style for some domain. A pattern language offers the same level of freedom
in detailed design as the programming paradigms we have discussed in
this chapter, but it has the narrowness of application of a domain-specific
language.

Pattern languages were popularized by an architect of the built world,
Christopher Alexander, in work that has progressed from the late 1950s
to the present time. The software community took notice of Alexander’s
work as early as 1968; one finds them mentioned at the first conference
on software engineering (Naur and Randell 1968). But they didn’t start
gaining a real foothold in software until the pattern conferences called
PLoPs (Pattern Languages of Programs) started taking place in 1994.

Most early patterns captured isolated structures of important but uncel-
ebrated knowledge, a trend that in large part persists to this day. However,
as parts of the community matured, pattern languages started to emerge.
Today’s noteworthy pattern languages of software architecture include:

■ The POSA series (Buschmann et al 1996; Schmidt et al 2000; Kircher
and Jain 2004; Buschmann, Henney, and Schmidt 2007a; Buschmann,
Henney, and Schmidt 2007b);

■ Fault-tolerant software patterns (Hanmer 2007);
■ Model-View-Controller (Reenskaug 2003).

This list is meant to characterize some of the good available pattern
languages but it is hardly complete.

Ideally, pattern languages are roadmaps for building entire systems
or subsystems in some domain. They are an extremely Lean approach
to development in that they build structure as the need for it arises.
Patterns build on two fundamental approaches: local adaptation of form
according to system needs, and incremental growth instead of lump-style
development. Both of these are done in a way that preserves the form
of the artifact as it has been developed so far, so a pattern is a form of
structure-preserving transformation. Patterns differ from the domain analysis
approach in that they capture the architectural form in documentation
rather than in the code, and in that their purpose is to create structure
according to a form rather than to guide the creation of form (architecture)
for its own sake.

124 Chapter 5

A few pattern languages exist that can guide you through evolutionary
architecture development using local adaptation and piecemeal growth.
So we add:

Technique 16

If you have a trustworthy pattern language for your domain, use it
instead of domain analysis or end user input.

More realistically, patterns suggest architectural styles that can selec-
tively guide the structure of your system. MVC is a good example: we’ll
talk a lot more about MVC in Chapter 8.

There are actually few mature pattern software languages in the pub-
lic literature. Much of the use of pattern languages may lie within your
own enterprise, growing over time as you use them to document archi-
tectural learning. Such documentation becomes a legacy (in the good
sense of the word) for the next generation of product or product-builders.
We’ll discuss this issue more in the documentation section at the end of
the chapter.

5.3.10 Third-Party Software and Other Paradigms
You might be asking: Where does my database management system fit?
Good question! Software is complicated and often doesn’t fit into a neat
methodological framework. Software that you don’t manage in-house,
or which follows another design style, can lead to a mismatch in the
interface between your software and the foreign software. Such software
fits into two major categories: ones whose APIs are already determined by
standards or by a vendor, and frameworks that you build in-house. Each of
them is reminiscent of the situations we previously discussed with respect
to DSLs.

First, let’s consider third-party software and software whose form is
dictated by standards. Too few companies consider software outside their
own four walls, and end up re-inventing the wheel (and it’s usually a much
poorer wheel).5 If you manage architectural variation well, procurement
of external software or partnering with vendors can be a huge business
win. Do a cost/benefit analysis before assuming that you should build
it yourself.

5 This is commonly called NIH, which stands for ‘‘Not IH’’ – ‘‘Not Invented Here’’ by default – but
can, among other things, mean ‘‘Not In this Hallway.’’

What the System Is, Part 1: Lean Architecture 125

Databases are a good example. Occasional rhetoric to the contrary not
withstanding, database software development rarely falls within the Agile
values. Databases are about processes and tools rather than people and
interactions. Design methods (e.g., formal relational models), processes
(e.g., normalization) and tools (e.g., commercial database servers) dominate
database work, darkly overshadowing the Agile values. If end users must
see SQL, they are really programmers who are working in the framework of
a relational (or network, or hierarchical) model rather than their cognitive
model of the business. Nonetheless, database approaches are a good
match for many problems in the solution domain. Let common sense be
your guide.

There are three considerations competing for your attention when eval-
uating third-party software: uniformity, autonomy, and suitability.

■ Uniformity: You want to keep a small inventory of paradigms in your
development shop. It’s expensive to train everyone in multiple
paradigms, to purchase (and maintain) the tool and language support
for multiple paradigms, and so-forth. You can wrap a module in a
paradigm suitable to the dominant project style: e.g., by using the
Adapter and Proxy design patterns (Gamma et al 2005) to
encapsulate the foreign software and its design style.

■ However, this approach has risks. Adding layers of transformation
between the end user and the internal data model can lead to a
mismatch between the end user’s model of what is going on in the
software and what is actually going on in the software. You can
overcome that with an illusion, but illusions are difficult to sustain.
Draw on deep domain knowledge grounded in experience, and
otherwise view such encapsulation with skepticism.

■ The Lean ideal is to partner with your business suppliers to seek
solutions that meet the needs of both partners. This is often a difficult
ideal to sustain in the software world, but we have seen this approach
succeed in some of our clients.

■ Autonomy: If your vendor is remote, then it will be difficult to include
their staff on a collocated cross-functional team. That implies that any
changes to the semantics of architectural interfaces require
coordination across organizational gulfs. That goes against the very
purpose of architecture. You can address this using two techniques:

Technique 17

Leverage standards when dealing with third-party software.

126 Chapter 5

and

Technique 18

Factor changes to third-party software into local parameters of varia-
tion or modules that are loosely coupled to the foreign software.

Standards are a staple of Lean. De facto standards are great;
industry-wide standards are even better. The ideal interface between
mutually foreign components should be a very thin pipe whose shape
is dictated by the standard. By ‘‘thin,’’ we mean that it doesn’t know
much about the business semantics. For example, XML supports thin
pipes that are themselves ignorant of the business domain.

You can also reduce coordination between software vendors and
clients by pushing all the changes to one side or another, and by
decoupling the two sides through published parameters of variation.
A simple example can be found in the setup software of your PC,
which allows you to select a simple parameter of variation called
‘‘Language.’’ Select Danish in that one place, and thousands of
interfaces automatically adjust themselves accordingly. If you were to
add a new language, like Swedish, you could accomplish most of the
work on the platform side. The client needs only to know about a
single new value that can be bound to one of the parameters of the
system API. Analysis should establish a wide enough range in these
parameters to anticipate the majority of variations that framework
users will need.

As a further example, consider an organization where data
designers and database users work together in a collocated setting.
The database users make frequent SQL query changes, and the data
designers make occasional changes to the schemata. You have the
flexibility of organizing as a cross-functional team, and may need
only minimal architectural expression of parameters of variation to
the database schema. There may not be a need to administer those
changes across an explicit architectural interface. In the mean time,
standards keep the interface to the database server itself stable.

■ Suitability: You want the architecture to fit both your domain model
and the end user model. Maybe you’re building a client-management
system whose architecture revolves around domain concepts such as
‘‘client objects’’ and ‘‘market objects’’ defined during analysis. Your
domain modeling results in an architecture where these become
primary forms.

What the System Is, Part 1: Lean Architecture 127

You can gain huge economies of scope by tapping into your clients’
existing relational databases instead of re-inventing that wheel. So
you have objects for clients and market concerns on one hand, and a
database on the other hand. Which paradigm do you choose? There
are no universal answers, but widespread experience offers hope that
these paradigms can enjoy a happy marriage. If you can encapsulate
the database-ness of the implementation inside the objects that come
from your analysis, you get the best of both worlds. Again, this means
that these objects must maintain a bit of illusion. Experienced
programmers are up to the challenge, and you can use many of the
same techniques mentioned under Uniformity just above.

If your software uses an Internet service or other remote API, you can
treat it much the same as third-party software.

As for such software that you build in-house, it’s more or less the same
song, second verse. Leverage standards in the design of such software
where possible. For example, it would be unwise to re-invent an SQL clone
as an interface to a DBMS that you develop in-house. Keeping to standards
affords you the option of migrating to a standard server should you need
to do that for reasons of scaling, cost reduction, or some other business
forcing function.

5.4 Documentation?

Many people will tell you that Agile means, ‘‘Don’t do documentation,’’
but they’d be wrong to claim that. You stop being Agile if you strive
for comprehensive documentation. We want the documentation that packs
the punch. Kevlin Henney notes that we should be able to reflect on our
documentation and say, ‘‘That’s the page I read that made the difference’’
(Coplien and Henney 2008). So the first rule of thumb for architecture
documentation is: Don’t sweat the small stuff. Focus on what matters.

Much of the documentation that ‘‘packs the punch’’ is that which
describes relationships that you can’t see in the code. In large building
construction the real blueprints, called as-builts, aren’t finalized until con-
struction is complete. They show where every heating duct and ever water
pipe lies within the walls, so the maintenance people can get at them
should the need arise. You can’t see them by just looking at the walls,
so the knowledge ends up in a document. To assume exact locations for
those artifacts before actually installing them would be guessing. These
relationships shift around during design. So the second rule of thumb is:
Think of your architectural documentation as an as-built more than as
a forward engineering document. Use code as your forward engineering
document. Notations and natural language descriptions are more likely to

128 Chapter 5

quickly become out of date during design because they are not directly in
the value stream.

5.4.1 The Domain Dictionary
Words mean things – or, at least, they should. Just establishing a common
project vocabulary can fend off misunderstandings and help the team come
to a shared vision of scope and purpose. What is a customer? An account?
A widget? The dictionary doesn’t have to be large, and additions to it
should be incremental. Make sure that they are reviewed and accepted by
the stakeholders.

A nickname is a term defined in the data dictionary that becomes
part of the use case vocabulary. Use of nicknames eliminates redundant
clarification at each point the concept is invoked. For example, many use
cases in a library system may deal with the concepts title, author, and year
of publication. It is easier to refer to them collectively as Book Publication
Data instead of recalling all three of these properties every time. Use
your domain dictionary to record these nicknames. Alistair Cockburn calls
them information nicknames and uses them for data concepts (Cockburn
2001, ff. 162) but you can apply them more broadly for what-the-system-is
terminology. We will discuss a related concept called habits in Section 7.5.1.
Habits are about what-the-system-does and usually do not belong in the
domain dictionary.

Editing Language: the keystroke sequences and menus accessible to the user (vi, emacs…)
Text Buffer: manages the text in between its residence in a file
File: long-term storage for the text on a secondary storage device
Window: medium for displaying the edited text to the user for interactive editing
Input Device: keyboards, pointing devices, and other facilities for user input to the editor
Command: a human/machine interface gesture

Figure 5-2 A Domain Dictionary.

The domain dictionary (Figure 5-2) should be a key deliverable of
the architecture effort. Developing this terminology during the analysis
process is even better.

5.4.2 Architecture Carryover
Within a given product area, successive product generations share many
common architectural elements. Basic domain concepts change slowly
while the features and technology change more rapidly. This suggests that
we might be able to re-use architecture. What might that mean?

What the System Is, Part 1: Lean Architecture 129

The traditional view is that one can re-use platforms. However, success
with such reuse has been slim at best, except in the case of generic software
such as low-level libraries and operating systems, which have evolved to
be domain-neutral. The pattern discipline evolved out of the beliefs that
the best carry-over from the past is ideas and basic form, rather than code,
and that such carry-over repeats often within well-delineated domains.

But what if the code expressed basic form instead of the structure of
platforms? Some patterns might find representation in code. In this book
we build repeatedly on the Model-View-Controller pattern, which we can
describe as three roles with certain repeatable use cases that tie them
together. You may have patterns from your domains that similarly can
be expressed as abstract base classes. Patterns from the references of
Section 5.3.9 may also have this property. If these patterns are documented
(such as MVC and the patterns from Section 5.3.9), add them to your library
of architectural documentation. Add these documents to new employees’
reading lists. It is far more important, not to mention far more useful, to
document these relationships of you core competencies than to document
system APIs and algorithms. Let the APIs document themselves, using
good identifier naming and other hallmarks of professional coding from
Clean Code (Martin 2009).

5.5 History and Such

Domain analysis is a mature discipline with a history that goes back to its
earliest apologist, Jim Neighbors in 1980 (Neighbors 1980). Domain analysis
has shown up in many guises in the intervening 30 years. Jim Coplien
worked with David Weiss and Robert Lai at Bell Laboratories as they rolled
out their FAST system internal to the company (Weisss and Lai 1999). As
is characteristic of the work of many domain engineering proponents,
Weiss and Lai focused on producing domain-specific languages (DSLs).
Coplien (1998) took a different tact, deciding instead to let general-purpose
languages express the domain semantics directly. Avoiding DSLs leads to
a less brittle programming environment over time, anticipating the Agile
need to roll with change.

Eric Evans’ Domain-Driven Design (2003) has become popular in recent
years as interest in DSLs again rises. It has been one of the most successful
works to popularize domain-driven approaches. However, today’s DSLs
are little more than languages embedded in other languages by convention,
and Evans’ book focuses more on analysis and design than on its reduction
to a DSL. Nonetheless, the analysis behind these languages is a crucial
activity to create resilient designs. Such designs can reduce cost and
improve responsiveness over a product lifetime; see Knauber et al (2002)
and Coplien, Hoffman and Weiss (1998).

C H A P T E R

6
What the System Is, Part 2:

Coding It Up

It’s finally time to write code. The Agile people out there have been
screaming, ‘‘what’s with all this documentation? We want some code!’’ The
Agile people will have their revenge when we come to the what-the-system-
does chapter; here we’re endearing ourselves to the Lean perspective.

And, in fact, this section is a little anticlimactic. The code should be really
lean. We’ll start with the basics and then investigate add-ons little by little.

6.1 The Third Step: The Rough Framing
of the Code

From a nerd-centric perspective, the following technique is perhaps one of
the two most important statements in the book:

Technique 19

The essence of ‘‘Lean’’ in Lean architecture is to take careful, well-
considered analysis and distill it into APIs written in everyday
programming languages.

That means that the ElectroCard routing team (from Chapter 5) might
produce these lines of code as one product of their architecture activity:

131

132 Chapter 6

class CircuitGraph

end

def route(theCircuit)

end

or these lines if they are programming in C++:

#include "BoardLayout.h"

class CircuitGraph;

extern BoardLayout

route(const CircuitGraph theCircuit);

Remember these goals of Lean:

■ To avoid producing artifacts without end-user value;
■ To deliberate carefully before making a decision, and then to act

decisively;
■ To create processes and environments that reduce rework;
■ To guide work according to overall consistency and harmony.

Lean architecture avoids producing wasteful artifacts simply by refusing
to produce many historic artifacts of software architecture. In the simple
version of route above, we don’t produce a function body until it’s needed.
Algorithm isn’t form; it’s structure. Its details aren’t fundamental to what
the system is; they focus on what the system does.

But that doesn’t mean that it is a casual declaration. In a way, we feel
cheated after all that domain analysis. Many projects feel the need to show
a mass of artifacts proportional to the work done. Here, the work isn’t
in the mass of the artifacts. The work is in dividing up the world and in
carefully analyzing what the structure of the artifacts should be. It’s a bit
like Picasso, whom legend says charged $20,000 for a portrait he completed
in ten minutes. The client was alarmed at the price, complaining, ‘‘But it
took you only 10 minutes!’’ Picasso allegedly replied, ‘‘Ten minutes, and
40 years.’’

Last, we are building heavily on wisdom of the decades, if not the ages,
by proactively standing on domain knowledge instead of hopping around
in response to the learning of the moment. The learning of the moment is
important, too, but it’s not everything. The domain knowledge provides a
context for such learning.

What the System Is, Part 2: Coding It Up 133

6.1.1 Abstract Base Classes
If most of the domains will be object-shaped – whether justified by domain
knowledge, patterns, or input from the end user mental model – most of
the architecture code will be abstract base classes. Each domain will be
delivered as an abstract base class, perhaps together with a small set of
declarations of supporting types, constants, or supporting procedures. In
most systems, each domain will form a module (see Sections 5.3.1 and 5.3.3).

Abstract base classes (ABCs) represent an interesting paradox. They are
real source code but generate no object code on their own. They guide
system form but contribute nothing to the product footprint. Their main
function is to guide programmers as they weave use case code into the
product. It is instructive to think of ABCs as tools rather than as part of
the product. One of the central concepts of Lean practice in Toyota today
is something called poka-yoke (fool-proofing). Abstract base classes may
not ensure that developers’ code will work perfectly, but they do guide
developers to write code that preserves the system form.

This might be an abstract base class for Accounts. Even in a scripting
language like Ruby, it makes sense to concisely define the interface for
clients of the Account class:

class Account

def accountID
end

def balance
end

Note that initialize from zero arguments is
illegal (enforced only at run time)

initialize(accountID, initialBalance = 0)
end

:private initialize

end

Notice that we use an explicit method interface for accountID, rather
than following the common Ruby convention of using attr_reader. The
attr_reader directive telegraphs the implementation (for example, of the
balance or account ID) as member data. That removes our freedom to
change the way we generate these values: for example, from a database

134 Chapter 6

lookup. Good architecture hides these strategies as secrets of the concepts
that contain them. We can express more insightful judgment and offer
more refined names by writing explicit methods than automatically gen-
erated getters and setters can. Besides, getters and setters do not achieve
encapsulation or information hiding: they are a language-legitimized way
to violate them.

Here it is in C++:

#include "AccountNumber.h"

class Account {

public:

Account(AccountNumber accountID);

virtual AccountNumber accountID(void) const = 0;

virtual Currency balance(void) const = 0;

. . . .

private:

Account(void); // the interface documents that

// this is illegal, and the

// compiler enforces it

public:

Account(AccountNumber, Currency initialBalance);

private:

AccountNumber accountNumber_;

};

The whole purpose of an ABC is to keep us from having to understand
all the variants beneath it in the inheritance hierarchy. For most clients of
any of the types beneath the ABC, one size fits all. This works because
all of the subtending types have the same behavior as published in the
ABC’s interface. It’s about all of them sharing that commonality. Of course,
each one implements selected behaviors differently by overriding them
with unique algorithms. For most architectural purposes we want to
encapsulate that variation, and the subtyping graph encapsulates it well.

Nonetheless, it can be good to articulate and publish key derived types
that arise during analysis, and we can go one level deeper and include the
base class for Savings Accounts in our architecture.

class SavingsAccount < Account

We will associate SavingsAccount with

TransferMoneySink at run time as needed

What the System Is, Part 2: Coding It Up 135

def initialize(accountID, initialBalance)

super(accountID, initialBalance)

end

private :initialize

def availableBalance; @balance; end

def decreaseBalance(amount); @balance -= amount; end

def increaseBalance(amount); @balance += amount; end

def updateLog(message, time, amount)

. . . .

end

end

Or, in C++:

class SavingsAccount:

public Account,

public TransferMoneySink<SavingsAccount> {

public:

SavingsAccount(AccountNumber, Currency);

Currency availableBalance(void);

void decreaseBalance(Currency);

void increaseBalance(Currency);

void updateLog(string message, MyTime t, Currency);

private:

// Model data

Currency availableBalance_;

AccountNumber accountNumber_;

};

These are in fact not ABCs, but concrete, fully fleshed-out system classes.
(Here, we’ve put the method bodies aside for brevity.) You will have
to make a project decision whether to defer such declarations as part of
implementation or to consider them as part of architecture. One important
guiding principle is: Abstraction is evil. To throw away this declaration
in the interest of keeping the more general, pure Account declaration is
to abstract, and to throw away information. What if your boss knew that
you were throwing away business information? A reasonable compromise
might be to separate the two administratively. But the architecture police
won’t come looking for you if you put it together with the Account

declaration as a full first-class deliverable of the architecture effort.

136 Chapter 6

Note – and this is a key consideration – that the SavingsAccount class
is dumb. It doesn’t even know how to do deposits or withdrawals. We’re
sure that your professor or object-oriented consultant told you that a good
account class should be smart and should support such operations! The
problem with that approach is that it fails to separate what the system
is – which changes very slowly – from what the system does. We want the
above class declaration to be rock-solid. Additions driven by use case
scenarios need to go somewhere else. This leads to another key technique
of Lean architecture:

Technique 20

Keep domain classes as dumb as possible so that their methods, which
represent long-term stable domain properties, aren’t mixed in with
the more rapidly changing interfaces that support use cases.

What do we do with the methods that support use cases? We talk about
that in Chapter 8 and a lot more in Chapter 9 but we can give a preview
now. The C++ declaration above makes a curious use of the indirect
template idiom (Coplien 1996):

public TransferMoneySink<SavingsAccount> {

Mechanically, what this line does in C++ is to compose the what-
the-system-does code in TransferMoneySink with the what-the-system-is
code in the SavingsAccount class. This line makes sure that objects
of SavingsAccount support one of the many use case scenarios that
a SavingsAccount object participates in: transferring money between
accounts. In that use case scenario a Savings Account plays the role of a
TransferMoneySink. This line is the connection from the what-the-system-
is world up into the what-the-system-does world. There can, in general, be
many more such derivation lines in the declaration.

In Ruby we do this gluing together at run time on an instance-by-instance
basis. If we create a SavingsAccount instance,

thirdAccount = SavingsAccount.new(0991540, 10000)

it can only do the basic, dumb operations of a Savings Account: increasing,
decreasing, and reporting its balance. What if we want to do something
more exotic, like a withdrawal? A withdrawal is a much richer operation
that may include transactions, report generation, and a host of other use

What the System Is, Part 2: Coding It Up 137

case steps. We can bring those in from code explicitly designed for the
situation, in a module called MoneySource:

module MoneySource

. . . .

def withdraw(amount)

. . . .

end

. . . .

end

thirdAccount.extend MoneySource

thirdAccount.withdraw(5000)

Again, we cover these techniques more fully in Chapter 9.
Analogous to these class declarations for domains that are object-shaped,

you’ll also have:

■ Procedure declarations (potentially overloaded) for procedural
domains;

■ Template or generic declarations for generative domains;
■ Constant declarations for trivial parametric domains.

You get the idea. Keep name choices crisp and enlightening; see some
good tips about this in the Clean Code book (Martin 2009). Remember that
code is read 20 times for every time it is written. For architectural code the
ratio is even more extreme.

Of course, system form evolves – albeit slowly. These declarations
change over time. Good domain analysis, including careful engagement
of all the stakeholders, helps to slow the rate of change to domain classes.
That gives you a good architecture, a good foundation, to stand on as the
project goes forward.

6.1.2 Pre-Conditions, Post-Conditions, and Assertions
Architecture provides great opportunities to support communication in a
project. Alistair’s diagram (Figure 1-1) gives a low score to written forms
of documentation. However, he doesn’t explicitly talk about code as a
powerful medium of communication. Code is like documentation when
people are sitting remote from each other; however, it can be more precise
than natural language documentation. It is very powerful when combined
with the other media in Alistair’s diagram. More powerful than two people
at a whiteboard is two people at a keyboard.

138 Chapter 6

The ABC declarations look a bit too malnourished to communicate the
intent of the API. We can say more, and still be Lean. In the interest of
having poka-yoke (fool-proof) guidance for the programmer, we should
capture information both about the class as a whole and about individual
member function arguments and return values. These interfaces are a
contract between the supplier and the user. Indeed, Bertrand Meyer has
long used the term design by contract for interfaces like this, expressing the
contracts as invariants (remember commonality from above?) that apply
at the interfaces (Meyer 1994). In many programming languages, we can
express such invariants as assertions. (These contracts exist as a basis for
dialogue and mutual understanding, not as a way to hold a client to your
way of doing things!)

Assertions were first popularized in the C programming language on the
Unix Operating System, and they have handily carried over to C++ and
are found in many other languages including C# and Java. These assertions
work at run time. If we are to use them, we have to run the code. That
means that we can no longer use ABCs alone, but that we need to fill in the
methods.

Ruby’s open environment makes it trivial for anyone to add customized
assertions. Here we add an assertion interface to Object:

class AssertionFailure < StandardError # 1

def initialize(message) # 2
super message # 3

puts 'Assertion failed: ' + message # 4

abort # 5

end # 6
end # 7

8

class Object # 9

def assert(bool, message = 'assertion failure') # 10
if $DEBUG # 11

raise AssertionFailure.new(message) # 12

unless bool # 13
end # 14

end # 15

end # 16

The code in Ruby might look like this:

class SavingsAccount # 1

def initialize(accountID, initialBalance) # 2
assert Numeric === initialBalance # 3

What the System Is, Part 2: Coding It Up 139

assert initialBalance >= 0 # 4

super accountID, initialBalance # 5
assert # 6

availableBalance >= Euro.new(0.0).amount, # 7

'positive initial balance' # 8
. . . . # application code # 9

assert availableBalance == initialBalance # 10
assert SavingsAccount === self # 11

12

assert true, 'reached end of initialize' # 13
end # 14

15

def availableBalance # 16
assert SavingsAccount === self # 17
@balance # 18

end # 19
20

def decreaseBalance(amount) # 21
assert SavingsAccount === self # 22
assert Numeric === amount # 23

assert amount <= availableBalance, # 24
'cash on hand' # 25

@balance -= amount # 26

assert availableBalance >= 0, # 27
'balance non-negative' # 28

end # 29

30
def increaseBalance(amount) # 31

assert SavingsAccount === self # 32

assert Numeric === amount # 33
@balance += amount # 34

assert true 'reached end of increaseBalance' # 35
end # 36

37

def updateLog(logMessage, timeOfTransaction, # 38
amountForTransaction) # 39

assert SavingsAccount === self # 40

assert Numeric === amountForTransaction # 41
assert logMessage.length > 0 # 42
assert logMessage.length < MAX_BUFFER_SIZE # 43

assert timeOfTransaction > # 44
Time.local(1970, 1, 1, 0, 0, 0) # 45

46

140 Chapter 6

. . . . # 47

48

assert true 'end of updateLog reached' # 49

end # 50

end # 51

The strange assert true clauses at lines 13 and 35 can be used with a
debugger or code coverage tool that is integrated with assertions. You can
change the implementation of assert to print its arguments even when
the value of the boolean variable is true, and voila! You have a crude trace
facility. The assertion also statically documents the programmer intent
that the function have a single exit. It is imperative that the assertion be
evaluated on each call of the function. Though it is more than a bit of
a challenge to create an assertion that fires when it is not evaluated, its
presence still communicates that intent.

In C++:

#include <assert> // 1

// 2

SavingsAccount::SavingsAccount(// 3

AccountNumber id, // 4

Currency amount): // 5

accountNumber_(id), // 6

availableBalance_(Euro(amount)) { // 7

assert(this != NULL); // 8

assert(availableBalance_ >= Euro(0.0)); // 9

// 10

// application code will go here // 11

// 12

assert(availableBalance_ == amount); // 13

assert(dynamic_cast<SavingsAccount*>(this) // 14

!= NULL); // 15

assert(true); // 16

} // 17

// 18

Currency SavingsAccount::availableBalance(void) { // 19

assert(this != NULL); // 20

// 21

// application code will go here // 22

// 23

assert(true); // 24

return availableBalance_; // 25

} // 26

What the System Is, Part 2: Coding It Up 141

// 27

void SavingsAccount::decreaseBalance(Currency c) { // 28

assert(this != NULL); // 29

assert(c <= availableBalance_); // 30

// 31

// application code will go here // 32

// 33

assert(availableBalance_ >= Euro(0)); // 34

assert(true); // 35

} // 36

// 37

void SavingsAccount::increaseBalance(Currency c) { // 38

assert(this != NULL); // 39

// 40

// application code will go here // 41

// 42

assert(true); // 43

} // 44

// 45

void SavingsAccount::updateLog(// 46

std::string logMessage, // 47

MyTime timeOfTransaction, // 48

Currency amountForTransaction) { // 49

assert(this != NULL); // 50

assert(logMessage.size() > 0); // 51

assert(logMessage.size() < MAX_BUFFER_SIZE); // 52

assert(timeOfTransaction > // 53

MyTime("00:00:00.00 1970/1/1")); // 54

// 55

. . . . // 56

// 57

assert(true); // 58

} // 59

Some of these assertions look trivial, but experience shows again and
again that the ‘‘stupid mistakes’’ are common and that they can be the
most difficult to track down. Furthermore, most ‘‘sophisticated mistakes’’
(if there is such a thing) usually propagate themselves through the system
as stupid mistakes. So these assertions serve a secondary purpose of
increasing the software quality right from the beginning. But their primary
purpose is to convey information about the arguments – information that
the types alone may not convey. For example, we see that there is an upper
bound on the size of the log string to SavingsAccount::updateLog.

142 Chapter 6

C# has an Assert feature as part of the Debug class. Like all Debug code,
assertion calls are filtered out in release mode. C# Assert behaves much
like C assert:

Debug.Assert(logMessage.size > 0,

"Log messages cannot be the null string.");

If the assertion fires the programmer will be treated to a stack back trace.
If you want only a single line of output before program termination, then
use WriteLineIf:

Debug.WriteLineIf(logMessage.size > 0,
"Log messages cannot be the null string.");

In general, we can assert the following:

Technique 21

Use assertions and contracts to embellish the program code to express
interfaces between system modules.

Static Cling

These C-style assertions depend on information that is available only at run-
time. For compiled languages like C++, we can also create assertions that
the compiler evaluates at compile time using information that’s available
at compile time. That is more in the spirit of architecture as form. Such
assertions have long been available in many programming languages using
macros, templates and generics.

C++ now has a static assertion feature as part of the language. These
assertions are most useful for compile-time bindings that are not direct
source-time bindings. Such combinations often arise when using templates.
Consider this example:

// Create compile-time "log" function // 1
// 2

template<int i> struct param { // 3
enum{ // 4

isPowerOf2 = i&1? 0: param<i/2>::isPowerOf2 // 5
}; // 6

}; // 7

What the System Is, Part 2: Coding It Up 143

// 8

template<> struct param<1> { // 9

enum{ isPowerOf2 = 1 }; // 10

}; // 11

// 12

template <class T, int size> // 13

class BuddySystemBuffer // 14

{ // 15

// Buddy system pools must be 2**n // 16

static_assert(param<size>::isPowerOf2); // 17

public: // 18

. . . . // 19

private: // 20

T pool[size]; // 21

}; // 22

// 23

BuddySystemBuffer<double, 128> b1; // o.k. // 24

BuddySystemBuffer<double, 255> b2; // error // 25

The declaration at line 25 results in a compile-time error.
There are also simpler ways to capture static architecture relationships,

which vary from programming language to programming language. For
example a C++ base class may express a member function as a pure virtual
function, as we have done with all of the member functions in the interfaces
of MoneySource and MoneySink below:

class MoneySource { # 1

public: # 2

virtual void decreaseBalance(Currency amount) = 0; # 3

virtual void transferTo(Currency amount, # 4

MoneySink *recipient) = 0; # 5

}; # 6

7

class MoneySink { # 8

public: # 9

virtual void increaseBalance(Currency amount) = 0; # 10

virtual void updateLog(string, MyTime, # 11

Currency) = 0; # 12

virtual void transferFrom(Currency amount, # 13

MoneySource *source) = 0; # 14

}; # 15

144 Chapter 6

These declarations remind programmers to create implementations of these
functions in the derived classes. (In this case, we are using MoneySource
and MoneySink as traits on other classes, and the pure virtual functions
document what the traits expect of the objects into which they are injected.)
We will discuss this technique more in Section 9.4.3.

Some languages such as Eiffel can check consistency between assertions
at compile time. So, for example, you can define the contract terms for
a base class method in the base class, and for the overridden method
in the derived class. The Eiffel compiler ensures that the contracts obey
the Liskov Substitutability Principle (LSP) (Liskov 1986), which is a classic
formalization of proper object-oriented programming. Eiffel ensures that no
derived class method expects any stronger guarantees (as a precondition)
than the corresponding base class method, and that methods promise no
less (as post-conditions) than their corresponding base class methods. This
makes it possible for a designer to write code against the base class contract
with full confidence that its provisions will still hold, even if a derived type
object is substituted where the base class object is ‘‘expected.’’

We get to assert (for the final invocation of this pun) that:

Technique 22

If you face trading off between expressing an assertion in terms of
static properties available at compile time, or dynamic properties
available only at run time, be sure to include the static version. Also
include the dynamic version if it adds value in validating the code.

6.1.3 Algorithmic Scaling: The Other Side of Static
Assertions
Assertions are a stopgap measure to ensure at compile time, or at worst
at run time, that the system doesn’t violate architectural and engineering
assumptions. Good code can make the assumptions true by construction.
This is particularly true in programming languages with strong compile-
time systems (like C++) and less so in dynamic languages (like Ruby).

Algorithmic Scaling is a pattern described by Fred Keeve at AT&T
in the 1990s (Adams et al 1998). The idea is that the entire system is
parameterized with compile-time constant parameters at the ‘‘tops’’ of the
architecture, such as the amount of total configured memory, the number
of subscribers that the system should support, etc. These parameters can
be combined in expressions that generate other parameters for use at lower

What the System Is, Part 2: Coding It Up 145

levels in the architecture, which in turn propagate them to lower levels,
and so forth. Such static parameters can be used to size data structures, for
example.

For example, consider a video network based on a token-passing ring.
The network acts like a ring of nodes. At any time there is only one
token active on the ring. Tokens are passed from node to node around
the ring. Anyone can read the token; whether a node can deposit
something in the token is determined by the protocol.

The domain model includes network links, network nodes, and, at
the top level, the ring itself. Consider that we use a class paradigm
or object paradigm for each of these entities. (The ring may not be
an object instance in any normal sense, but it is still part of some
stakeholders’ mental model of the system, and is therefore part of the
domain model.) A network node may be declared as follows:

class NetworkNode {
public:

static const TimeInterval MaxAllowableDelay =
Milliseconds(30);

. . . .

The network link declaration may look like this:

class NetworkLink {
public:

static const TimeInterval interNodeTime =
Milliseconds(1);

. . . .
};

The ring itself may be a template that allows the software to be
configured for many different networks:

template<unsigned int numberOfNodes_>
class Ring {
public:

static const numberOfNodes = numberOfNodes_;
. . . .

146 Chapter 6

Given these declarations, we can generate a third constant, which
is the maximum number of nodes on the network:

. . . .
static const unsigned MaxNumberOfNodes =

NetworkNode::MaxAllowableDelay /
NetworkLink::interNodeTime;

. . . .

Of course, this means that the declaration of Ring must have access
to the declarations of both NetworkNode and NetworkLink.

These declarations not only establish and document pair-wise rela-
tionships between architectural modules, but also establish a thread of
dependencies that ties parts together in a way reminiscent of aspects.

Of course, one can do something similar in Ruby or other scripting
languages, but the values are evaluated at run time rather than at compile
time (because there really isn’t much of a distinction).

6.1.4 Form Versus Accessible Services
Architecture should capture the forms that you wager will remain stable
over time. That such forms are stable doesn’t mean that they are global or
even that they are large. It doesn’t imply that all of their APIs or attributes
should be published to a client. We can separate each form’s interface from
the form itself.

It is useful to administratively separate the published interface of the
form from the private interface. Abstract base classes are a natural way
to express the public interface in most programming languages. In C++
abstract classes can also express the protected and private interface of a
class. You can adopt or create conventions to capture such details in the
syntax and semantics of other languages.

A closely related rule of thumb is that an architect shouldn’t feign igno-
rance. Architects too often avoid writing down known details because they
feel that larger concerns will later invalidate what they know. Sometimes,
in fact, the details are more knowable in advance than are the larger or
more exposed forms of a system. Assert and write down what you know.
If the domain analysis finds a recurring, common, stable form, capture it
somewhere, even if it supports only a single stakeholder. Great architecture
is as much about detail as it is about the large structures. The architect
Ludwig Mies van der Rohe is quoted as saying, ‘‘God is in the details,’’

What the System Is, Part 2: Coding It Up 147

and he personally chose the doorknobs for the houses he designed. Like
Mies van der Rohe:

Technique 23

Use the code to capture and assert what you know. Don’t go looking
for every detail during domain analysis, but if you uncover a detailed
bit of knowledge, capture it in code so it doesn’t get lost. Being a detail
doesn’t mean that it can’t be common or stable.

6.1.5 Scaffolding
Just as scaffolding and ultimately plumbing and wiring must be part of
a house design, so should software ‘‘scaffolding’’ figure into the design.
This includes support for design styles that you know about early on and,
like the other so-called details discussed in the previous section, are worth
capturing in code.

Most of this ‘‘scaffolding’’ or ‘‘plumbing’’ is code that isn’t part of a class
interface but is just implementation. Simple constant declarations, static
assertions, and other declarations are examples of such plumbing. Some
scaffolding, however, does affect the interface. Here are some examples of
scaffolding code:

■ Stubs for procedures and class methods that make it possible to generate,
compose and run an otherwise partially complete system. Because the
architecture is pure form – just abstract base classes or APIs – it can’t
run. Stubs and mocks can fill in the cracks. It can give a project a
tremendous sense of assurance if the entire system compiles and links
with no undefined symbols. Going even further: if the system can be
executed and can run even a simple ‘‘Hello World’’ application (or
putting up the corporate logo on the screen) without crashing, and
with all dynamically allocated memory deallocated or all resources
freed before program exit, you have a strong assurance of some level
of architectural soundness.

Stubs and mocks might be implemented as simple assertions for
code that should be unreachable. Consider a partially implemented
domain class, designed to implement the interface of its abstract base
class. Perhaps some of its methods are not yet implemented in the
current release. Such methods should be stubbed with assertions or at
least with code that takes reasonable action for error reporting or
recovery. Going a step further, the presence of such classes suggests

148 Chapter 6

that the domain may not properly have been decomposed. Consider
re-factoring the design (perhaps by splitting the class in two) so that
every class implements the complete interface of its abstract base
class.

■ Code for specific patterns that implement the architectural style. Let’s say
that your architecture has an object that can change type at run time,
but you want to hide that type change from the object clients. For
example, a telephone may use an internal object for communicating
with its voice network connection, and you may want that connection
to transparently (to both the end user and to the internal software)
change from the phone company’s cellular interface to a public
Ethernet interface whenever one is available. You want to use a
combination of the Facade and State patterns (Gamma et al 2005) to
present a constant interface and identity to the client, while the
Facade maintains alternative implementations that can be swapped
in and out of action at run time. These implementations probably
share a common base class (AudioNetworkInterface in this
example) that allows the Facade to treat them generically. Such
constructs are arguably the territory of architecture because they go to
the foundation of the computational model and affect the form of the
domain object.

Another example of such an architectural style is to separate
instantiation from initialization. This is important to implement
mutually recursive data structures or to otherwise handle timing
issues that require these two functions to be separated. Initialization
is a business concern while instantiation can be viewed as a
scaffolding issue. Specific architectural forms can handle these needs
in an idiomatic way (Coplien 1992, 79–82).

In general, there are many idioms and low-level so-called patterns
that are important to capture in the architecture, even though they
may not be present in the interface. Some of them, such as Factory
Method (Gamma et al 2005), may affect the interface as well.

■ Programming language extension. For example, Scala supports
anonymous classes that nicely express role injection, which is
something that we’ll want to do in Chapter 9. C++ does not. If you
want to inject just the bare minimum of roles at any given point in a
C++ program, you need to simulate some of the Scala language. In
this case, Scala provides anonymous classes while C++ does not.
Therefore, the programmer must manually create an intermediate
class that simulates what Scala does by composing a domain class
with an injected class just long enough to make an object from it. In
Scala, that class doesn’t appear in the source code:

What the System Is, Part 2: Coding It Up 149

val source = new SavingsAccount with SourceAccount

In C++, it must:

class SavingsAccountWithSourceAccount:

public SavingsAccount,

public SourceAccount<SavingsAccount> {

. . . .

};

SourceAccount<SavingsAccount> *source =

new SavingsAccountWithSourceAccount;

■ Test points for use by system testers. For example, system testers may
want to run automatic tests that simulate GUI interactions; such an
interface may double as a foundation for remote administration or
trouble-shooting of the system. The system must provide a testing
API that is accessible to such an external tool.

6.1.6 Testing the Architecture
Though this is not a book about testing, most testing books focus on the
imperative and behavioral aspects of testing. It’s important to bring out
two more facets of testing more pertinent to this book: usability testing and
architecture testing.

After you reach your first architecture deliverable, you can do both
usability testing and architecture testing. In the spirit of Agile you can
of course do partial testing along the way; don’t leave it all until the
end. And in the spirit of Scrum, you want your architecture work to be
done-done-done before you start building on its foundations.

Usability Testing

A good program architecture complements the interactive interface of
an Agile system, and vice versa. Usability testing can yield insights on
architectural improvements. See Section 7.8 for a short discussion of this
issue.

Architecture Testing

The goal of architecture testing is to find ways in which the architecture
is either delivered broken, or in which it might ‘‘break’’ over time. What

150 Chapter 6

it means for an architecture to ‘‘break’’ is that changes in technology or
customer needs become unreasonably costly.

Let’s briefly consider what it means to review the ways in which an
architecture is delivered broken. This is the classic approach in waterfall
projects. In a classic architecture review, the heavyweight experts walk in
the door long after the architects have finished their work, armed with
expertise and insight. They bring a ‘‘dispassionate’’ external perspective to
the project. Their scope is usually technical: Is this the best technology or
framework for your business?

By all means, if a chance arises to snag an expert or consultant who
happens to be passing by, you shouldn’t pass it up. Common sense dictates
that you seek insights wherever you can find them. However, it puts the
project at risk to defer reflection on key decisions about system form, and
reviewing an architecture whose form is already committed means that
issues that arise in the architecture review will cause rework. The Lean phi-
losophy is to pull such decisions forward. Instead of waiting until a review
to bring in the big guns – who tell you all that is wrong with the system
and saddle you with weeks of rework – you engage the big guns early.

The Agile way is to view domain experts as part of the team and to
make sure they are there from the beginning. You want to apply domain
experts’ insights through forward engineering rather than using them to
do a drive-by assessment late in the project. In the Scrum sense, they should
be invested in the project like Scrum ‘‘pigs,’’ rather than just contributing
like ‘‘chickens.’’1

It is of course important to assess the appropriateness of a particular
technology, or framework, or architectural form for a particular business
need. In an Agile project, the team makes most of these decisions going
forward instead of waiting for a third-party review. A third-party review
can add value, but it’s important to understand that outsiders bring their
own perspective and agendas that are outside the team dialogue. They
bring a fresh perspective, but they also lack the context of the complex
interactions and perspectives of the stakeholders on the team. (If you have
a stakeholder who isn’t part of your extended team, ask yourself: could
you improve things if they were?)

Many architectural drivers are non-technical. Though it may make no
technical sense to use CORBA, the customer clientele may insist on it, and
CORBA may end being the right choice for reasons of market acceptance.
Like it or not, business stakeholders have their say in architecture reviews.
So do the technical people, who can respond with their perspective on the

1 These are common cultural terms in Scrum, where being a pig means to be materially involved in
production, while being a chicken means to be supportively involved but not directly committed.
The terms come from a joke about a pig and chicken starting a restaurant.

What the System Is, Part 2: Coding It Up 151

cost of such decisions. In the spirit of Agile, it takes a team with a high
degree of trust to grapple with these issues and to drive to a bottom line
such as return on investment.

Such traditional reviews, therefore, have a place. But the first order cost
of architecture is its long-term cost. In the spirit of Lean, we’re focused
on the long term. Unexpected costs arise when developers have to make
changes to parts of the system that were designed to be stable. If we can
project such costs into the future, we can act on the architecture today to
potentially lower the lifetime cost of software maintenance. ‘‘Maintenance’’
is where most software money goes (Boehm 1976; Lientz, Swanson and
Tompkins 1978), so it pays to focus on it, rather than today’s framework
costs, in an architecture review.

As with any testing, there are three parts to architectural testing: creating
the tests; applying the tests; and assessing the results. Creating the tests
means creating business scenarios that foresee potential changes. Applying
the tests means investigating how these changes deform the architecture.
Assessing the results means evaluating the cost of accommodating such
changes given the existing architecture.

Some of the best people to create future business scenarios are your
sales and marketing people. They have their fingers on the pulse of the
market, and possess knowledge of the market history and imagination for
the market’s future trends. As much as we are frustrated by their apparent
unreasonableness when they come to us with new requirements, that is
exactly the perspective you should be seeking in these reviews: to find the
outlandish outliers in the market-scape. You can use standard risk analysis
techniques to build a team consensus on the likelihood of each change and
take that into account during cost assessment.

So start with your sales and marketing people – but don’t stop there. Use
your imagination to engage creative people in the review process. Don’t
forget changes in technology and standards. (Architects note that the nice
things about standards are that there are so many of them, and that they
can always be changed.) Use an open-ended brainstorming approach, and
then revisit your findings to soberly assess the likelihood of each scenario.
Your stakeholders may even be persuaded to view the activity as a way to
generate new killer apps in the market!

For each scenario that your focus group creates, have your developers
pretend that they are actually going to implement it. Convene a short design
session to evaluate the cost of the change. Cost is roughly proportional to
the number of architectural interfaces that have to change to accommodate
the change in the market.

The business folks own the answer to the question: What does ‘‘unrea-
sonably costly’’ mean? There is no free lunch, and no one should expect

152 Chapter 6

things always to be easy. Bertrand Meyer talks about his law of continu-
ity, noting that good design should promise only that easy changes be
inexpensive and that more fundamental changes be costly:

Continuity is a crucial concern if we consider the real lifecycle of
software systems, including not just the production of an acceptable
initial version, but a system’s long-term evolution. Most systems
undergo numerous changes after their first delivery. Any model of
software development that only considers the period leading to that
delivery and ignores the subsequent era of change and revision is
as remote from real life as those novels which end when the hero
marries the heroine – the time which, as everyone knows, marks the
beginning of the really interesting part. (Meyer 1994, p. 103)

Even the best design can’t flatten the cost curve to a constant: there is
always a price to pay for change. One good rule of thumb in answering
the ‘‘unreasonably costly’’ question is to apply Meyer’s model in a relative
way. Assess the cost of a moderately complex change. If you can find a
large set of changes that should be easier from a business context, or from
the context of the end user mental model, and that are more expensive than
the moderate change, your architecture may not be as good as it should be.

In doing this cost assessment, you should be careful to start by separating
architectural costs from operational, training, customer retrofit, and other
business costs that don’t trace directly to the architecture. Evaluate the
architecture for its own sake. In the end, everything matters, but you want
to start by separating concerns; you’ll find that helps clarify subsequent
discussions of tradeoffs. Later, the business may recommend a sub-optimal
architectural change (e.g., in the interest of embracing a standard that has
gained market attention) because the overall business result will be better.
Taking a cue from Lean, all decisions should focus on long-term results.
Long-term arguments usually, but not always, work in the interest of an
elegant architecture. Nerds: sometimes you’ll lose these arguments, and
you’ll have to learn to take your medicine and buy into the bigger picture.

There is no good definition of architectural completeness (though we
take a stab at it in Section 6.4). A good team is always refining the
architecture as requirements become better understood and grow over the
product lifetime. Architectures change, and minimizing their surprising
costs reduces risk in the product’s profitability. The team needs to agree
what ‘‘done’’ means for ‘‘the architecture is done’’ at any given stage in the
project.

See also Section 6.2.2, ‘‘Testing the relationships.’’

What the System Is, Part 2: Coding It Up 153

6.2 Relationships in Architecture

Object-oriented architecture doesn’t just mean ‘‘a bag of objects.’’ Just as
in housing architecture, architecture is more than a parts inventory. It is
about relationships between parts. We should communicate what we know
about those relationships at design time – in the code.

6.2.1 Kinds of Relationship
Many of these relationships are dynamic and our treatment of them will
come in Chapter 8 and Chapter 9. For example, the mapping of a role to
the object playing the role is dynamic, and we capture the mapping in
something called a Context object. (We will briefly say more about Context
objects in the next section.) However, some of the relationships are static.
Many such relationships are simple, well-known design relationships.
Examples of these include:

■ The use of one object type in the interface or implementation of
another. The #include statements in C++ and import statements in
Java and C# document (and enable) relationships between
architectural entities.

■ Static assertions, as described in Section 6.1.2.
■ Algorithmic scaling as described in Section 6.1.3.
■ Patterns, which are all about architectural relationships. While the

patterns themselves deserve special treatment (see Section 5.4.2),
actual instances of major patterns should be flagged in the code.
Consider Model-View-Controller as an example. Use either of
well-named classes (e.g., deriving from base classes called Model,
View and Controller – a bit simplistic, but you get the idea) can help
immensely. The code should speak for itself, but a crisp comment in
the code is almost always better than a description in a separate
document.

■ Composition, particularly of classes. Object composition – the old
HAS-A relationship of 1980s method notations – is often a low-level
programming concern rather than an architectural concern. If
composition has architectural overtones, then make such
relationships visible. One place that they will become important in
the DCI architecture of Chapter 9 is for the composition of the
methodful roles that bear the logic for what-the-system-does, with the
domain classes that bear the logic for what-the-system-is.

154 Chapter 6

We can illustrate with an example. Consider a text editing
application where one of the roles is a Selection. A Selection is a role
that can be played by a line, a paragraph, a whole file, or maybe other
things. One operation on a selection is to create a word iterator
initialized to the beginning of the selection; the iterator can be
advanced word by word to implement, for example, spell checking.
We might find the code:

template <class ObjectPlayingSelector>
WordIterator
Selection<ObjectPlayingSelection>::newIterator(void) {

. . . .
unsigned nchars =

dynamic_cast<ObjectPlayingSelection*>(this)->
size();

. . . .
}

In this context, size is a member function of the domain object into
which the role has been injected. It may be that a TextBuffer object
plays this role:

class TextBuffer: public Selection<TextBuffer>
{
public:

unsigned size(void) {
. . . .

}
}

We want to document, and enforce at compile time, that any such
compositions must contain at least the methods newIterator and
size:

class SpellCheckSelectionBase {
public:

virtual unsigned size(void) = 0;
virtual WordIterator newIterator(void) = 0;

}:

and then add code to enforce it:

template <class ObjectPlayingSelection>
class Selection:

What the System Is, Part 2: Coding It Up 155

public SpellCheckSelectionBase {
public:

WordIterator newIterator(void);
. . . .

};

Because TextBuffer derives from the Selection template, all of
the interfaces stipulated by the SpellCheckSelectionBase
‘‘compositor’’ are met.

6.2.2 Testing the Relationships
A crucial yet subjective measure of a good architecture is that its relation-
ships tie modules together while sustaining maintenance autonomy for
each one. How should you evaluate relationships?

First, each relationship should be self-evident to someone knowledgeable
about the domains of application. ‘‘Sneak paths’’ violate our intuition about
being able to make changes in relative isolation and lead to unpleasant
surprises.

Second, the most important relationships are those between the code
of geographically separated teams. Dependencies between code mod-
ules (classes, actual modules, functions, etc.) are probably the final (and
sometimes least important) consideration.

Margaretha Price (Price and Demurjian 1997) has a simple rule of
thumb for gauging relationships. Most simply expressed, general-purpose
software should not depend on specific software, though specific software
can of course depend on general-purpose software. One obvious example
can be found in the relationship between a class and its base class:
a class for a specific concept should never be the base class for the
class for a more general concept. However, Price’s relationships are more
general, including, for example, the relationship between general-purpose
platform APIs and feature-specific code. What constitutes general-purpose
and specific is subjective but within the judgment of domain experts.
Moving data, methods, etc. between architectural units can reduce these
dependencies (but remember that relocating a function may reduce one set
of dependencies while increasing others).

6.3 Not Your Old Professor’s OO

Most Agile software is built from classes and objects, following a simple
definition of object orientation based on commonality and variation, as
in Table 5-1 and Table 5-2 (on page 98 and page 119, respectively: see

156 Chapter 6

the bottom right-hand cell in each of the tables). What, exactly, are the
‘‘building materials’’ we use for object orientation? Table 5-1 and Table 5-2
suggest that object orientation means that we take advantage of overrid-
den functions in derived classes. But why should we talk about classes
when it’s called object-oriented programming? Classes are static, so a class
architecture can capture only architectural statics. Agile is about embracing
change – certainly in the classes, but how about in the run-time connection
between objects? That’s even more crucial to the concerns of usability and
maintainability than the class structure is. We’ll return to this question in
detail in Chapter 9, but will explore the topic a bit here first.

Classes are the Lean part of Lean Architecture and Agile Software
Development. Classes and their relationships may be complicated (in the
Lean sense of the word) but are unlikely to be as complex (in the Agile
sense of the word) as run-time object relationships are. One shortcoming
of domain analysis techniques – including the object orientation of today’s
textbooks, which can be viewed as an advanced but constrained form of
domain engineering – is that they are so static. We might expect an Agile
world to be more dynamic.

History confuses the issue. Definitions of object-orientation abound, but
one common lay definition of an object is a locus of related responsibilities.
Responsibility-driven design is widely used and acknowledged as a well-
grounded approach to object orientation. Most Smalltalk, Java, C#, and
C++ programmers realized the responsibilities of analysis and CRC cards
in class interfaces, and objects became invisible over time as design entities.

In this book we carefully distinguish three key building blocks of
object-oriented design:

■ Objects, which are the end users’ conceptualization of things in their
business world;

■ Classes, which provide simple, encapsulated access to the data that
represents business information;

■ Roles, which interact in a use case to achieve some business goal.

Note that these are more or less design-time concepts. We want end user
objects to correspond closely to programming objects, and there are few
obstacles to achieving that ideal if you view the running system from the
end user perspective. It’s a bit different from the programmer perspective!
Few programming languages allow us to actually program objects: we
program classes. To complicate things even further, classes may serve
other programming purposes. For example, we will see in Chapter 9 that
classes (in the programming language sense) are one way to realize roles
(in the design sense).

What the System Is, Part 2: Coding It Up 157

The data model shows up as classes in the code in most programming
languages. If we are using old-fashioned object-oriented programming,
these class interfaces will also publish methods that might directly appear
in a use case. However, except in the very simplest case, these what-the-
system-does methods tend to change at different rates, and in response to
needs of different stakeholders, than the domain interfaces.

In Section 7.7 we will discuss two design alternatives for grouping the
methods that come from behavioral requirements. In the first case, when
it makes sense to use old-fashioned object oriented programming, these
methods go together with the interface for the domain operations. In the
second case when it makes better sense to disentangle the use case logic
from the domain code, we put them in separate constructs called roles.

In the first case, domain methods and use case methods live together in
the same class interface. These use case methods represent atomic events
and operations on a single role rather than an interaction between roles.
Code that uses this style exclusively, we will refer to as having an Atomic
Event architecture. In the second case we will find a home for the use case
logic in the code representing the roles involved in the use case. This is
called the Data-Context-Interaction (DCI) architecture.

The C in DCI stands for Context. The Context object is a special kind of
object that we will introduce in Chapter 9. Its job is to tie together the roles
of the use case with the objects that will play those roles for the current use
case. There is one class of Context object for each use case in the system.
Context objects are another part of the ‘‘scaffolding’’ that supports the
execution model.

But a Context object may in fact be more than that. Consider a Bank
Account. Is it a domain data object? No: the real domain objects in a bank
are transaction logs and audit trails. Yet a Bank Account looks like a domain
object from the perspective of a withdrawal or deposit or money transfer.
In fact, the best way to decouple concerns in a case like this is often to have
a ‘‘traffic cop’’ object that implements the coordinating connections that
make withdrawals and deposits and transfers possible. Context objects
normally have no state other than the knowledge of the domain objects
involved in the active use case that the Context represents. All domain
information is represented by data in those domain objects. So what might
look like a domain object early in analysis may end being a Context. And
Context objects that are created just to support specific use cases may look
a lot like domain objects.

What’s nice about this is that, in all of these cases, the architecture
can still be faithful to the end user model. That bodes well for good
maintainability and usability. Furthermore, a programmer implementing
use case scenarios such as withdraw, deposit and transfer may not need
to know whether a Bank Account is a domain object or a Context: it just

158 Chapter 6

looks like a smart domain object. Programmers implementing use cases on
the database can work directly in terms of transaction logs and audit trails,
where the data actually lie.

Several such architectural styles may be combined within a given system.
Such an architecture might have a hybrid layer of Context objects to
bridge the two worlds of what-the-system-is and what-the-system-does
(Figure 6-1). There can be arbitrarily many of these layers but humans have
difficulty going beyond about five (the number of things that will fit in
short-term memory).

Roles

Context
Objects

Domain
Objects

abc def ghk

Figure 6-1 An Object-oriented Architecture.

Figure 6-1 shows the object relationships in a strongly object-oriented
architecture that combines the Atomic Architecture and DCI approaches.
The class relationships for such a system may be different, and depend on
the programming language. In this chapter we have focused on the bottom
layer – a layer that doesn’t have to know much about its relationships to
the items above it. It is a relatively static layer, and that suggests that even
something as static as a class can capture most of its interesting semantics.

There are other objects and patterns of objects that are characteristic of
object systems, in particular the Model-View-Controller architecture that
provides the connection to the end user. Model, View and Controller are
roles, and are often implemented as interfaces (as in Java or C#) or abstract
base classes (as in C++). The Controller often has a close relationship
to Context objects: Controllers often create Context objects. The domain
objects often implement the Model role, though a Context object (like the
Bank Accounts described above) can also play Model roles.

What the System Is, Part 2: Coding It Up 159

6.4 How much Architecture?

There are a few polarizing topics in software engineering discourse, and
‘‘how much architecture’’ is near the top of the list. Critics of the segregated
up-front architecture efforts popular in large 1980s projects have even
earned a disparaging acronym: BUFD, for ‘‘big up-front design.’’ The
same folks have come up with their own catchy acronym that tells us that
up-front architecture is unnecessary work, saying: ‘‘You ain’t gonna need
it,’’ or YAGNI.

6.4.1 Balancing BUFD and YAGNI
In fact, though there is an element of truth in each of their arguments,
neither BUFD nor YAGNI get it entirely right. BUFD can’t work because
of emergent requirements. Even if there weren’t emergent requirements,
building too much up-front running code on speculation means the system
has a lot of functionality that doesn’t add immediate value in the market
and which doesn’t receive market feedback until long after it is delivered.
(Think of how much code in your system has never been executed.) These
aspects of software development are well known to most progressive
software folks and have become part of the modern software engineering
landscape. It’s no longer cool to be BUFD.

The arguments against YAGNI are subtler, at least in light of prevailing
software mores today. Many popular arguments in support of YAGNI
are naı̈ve: for example, that YAGNI is Lean because it avoids building
something ahead of its need. The argument is naı̈ve in the sense that it
is also naı̈ve to wait to build the basement or cellar of a house until you
decide you want a basement recreation room or until the late fall harvest
when you need a place for your potatoes. The basement is not only a
functional structure that hosts a recreation room or your vegetables, but is
also a form that supports and shapes the rest of the house. Furthermore,
because of its position in the architecture, it’s difficult to re-shape once it’s
in place. That suggests a process of up-front planning and thought.

The BUFD end of the spectrum is a caricature of Lean thinking (but lack-
ing attention to the value stream and to constant, ongoing improvement)
while the YAGNI end of the spectrum is a caricature of Agile thinking.
You need both. Consider Figure 6-2, which presents a model of long-term
cost as a function of the amount of effort put into architecture. The key is
to find the minimum in the curve where you have enough architecture to

160 Chapter 6

L
on

g-
te

rm
 c

os
t

Architectural effort

Figure 6-2 How much architecture?

enable development and to minimize rework, but not so much that you
create unused artifacts or shelfware.

6.4.2 One Size Does Not Fit All
The answer to the question: ‘‘How much architecture should I do?’’ should
vary from organization to organization based on need. What drives such
a need? Boehm (2009) argues that code mass and the degree of assurance
about stability are two of the major drivers. Figure 6-3 shows Boehm’s
model of project cost as a function of architectural investment; it is a more
elaborate version of the graph in Figure 6-2. The coordinate axis shows
how much time needs to be added to the schedule for a given investment
in architecture, while the ordinate access corresponds to the amount of
architectural effort. Too little architecture leads to rework and added effort;
too much architecture causes architecture work itself to dominate the
schedule.

Of course, this figure is only a model. An Agile organization uses its
own insight and experience to determine how deep to go into architecture.
Also, the time expansion factor is heavily dependent on how much your
organization can take advantage of the Lean Secret: to put everyone in
one room at one time instead of drawing out architectural design over
days or weeks of disconnected design activities, artifact creation, and
reviews. Strive to bring all the information together at once so there are
no delays in getting the information necessary to support an architectural
decision.

6.4.3 When Are You Done?
How do you know when you’re done with architecture? The following
questions might help you decide:

What the System Is, Part 2: Coding It Up 161

100

90

80

70

60

50

40

30

20

10

0
10 20 30 40 6050

Percentage of the time added for architecture and
risk resolution

Pe
rc

en
ta

ge
 o

f
th

e
tim

e
ad

de
d

to
 o

ve
ra

ll
sc

he
du

le

Rework

Sweet Spot Drivers:
Rapid Change: Leftward
High assurance: Rightward

Architecting
 (dotted line)

Total

Sweet spot

Percentage of project schedule
devoted to initial architectural
and risk resolution

Added schedule devoted to rework
(COCOMO II RESL factor)

10,000 thousands of equivalent
source lines of codes (KSLOC)

100 KSLOC

10 KSLOC

Total % added schedule

Figure 6-3 Effect of size on sweet spot. From Boehm (2009).

■ Does the architecture contribute to solving the problem in the
long-term problem definition (Chapter 4)? If not, consider why you
built the architecture that you did.

■ Can you test it (Section 6.1.6)? Stakeholders should develop the
architecture to a point that they have confidence that it will support
business goals in the future given the available sustaining investment.

■ Are there readers for all of the documentation (Section 5.4)?
Documentation can be minimal, in spite of our inclination that we
need something other than abstract base classes to show for the work

162 Chapter 6

we put into up-front design. Document architectural core
competencies as patterns; otherwise, try to let the code speak for itself.

■ Can you evolve it? Your architecture isn’t done if you don’t have a
process to evolve it over time.

■ Does it support your market? Ask whether it is easy to configure
deliverables for different market segments. Assess whether the
architecture supports convenient generation of product line members.

■ Are architecture documents literate, and do they use consistent
vocabulary (Section 5.4.1) and plain language so that stakeholders
broadly can understand them?

■ Last, does the team understand the architecture and the technology
necessary to maintain it over time? The finest architecture created at
the hands of an object wizard is useless if your team lacks object skills.

Your team will doubtless think of many more criteria to assess the
architecture. Use your imagination, and challenge yourself.

And, of course, you are never really done with architecture. At any given
time you need to trade off the business risk and return on investment
against the architecture effort. Most of this is common sense. Revisit your
architecture occasionally and assess the cost of augmenting or refining it,
as well as the potential resulting payoff.

6.5 Documentation?

The code itself can be one of the most faithful forms of documentation
and in any case is, and probably should be, the oracle for architectural
insight. That is the first rule of thumb of architectural documentation.
In a perfect world the code reveals the architecture and the designers’
intent. Unfortunately, few programming languages are expressive enough
to capture the nuances not only of the form of the data, but also the
relationships between data, or between processes, while still capturing
the essence of the system behaviors and the interactions between them.
We usually need something else, and patterns are one of the best ways
to capture the big picture. So the second rule of thumb for software
architecture is to capture the big picture somewhere, and patterns are a
powerful way to do that.

We’re lucky if the source code gives us a clue about one or two of
these properties, so we need supplementary documentation. Perhaps the
main place of architecture documentation is to capture relationships that
are not visible from the code itself. For example, we might have designed
a given encryption algorithm to work particularly well with a separate

What the System Is, Part 2: Coding It Up 163

compression algorithm. We wouldn’t be able to find that in the code. Code
commentary of course can help, but we should also capture such design
decisions an architecture document at the level of the system partitions. So
the third rule of thumb for architecture documentation is: Use structured
prose to capture the major elements of form that are invisible in the source
code.

Some of these invisible structures are so common that they become part
of business core competency. They recur in your product. They may recur
across multiple products. Such deep and often timeless forms should be
captured as pattern languages. This leads us to our fourth rule of thumb:
Documentation should focus on broad, lasting, and positive forms that
capture core business competencies. Don’t waste time creating redundant
documentation for specific or fleeting forms; capture those in the code. To
review our earlier discussion of patterns, see Section 5.4.2.

6.6 History and Such

To use the object-oriented programming concepts for design, and ulti-
mately for architecture, can be traced back to Grady Booch’s early work. He
wrote his very first paper in 1984, called simply ‘‘Object Oriented Design.’’
A growing number of methodologists, such as Peter Coad, explored this
space throughout the 1980s, often in the context of OOPSLA, the annual
ACM SIGPLAN conference on objects.

The object community split into two extremes during the 1980s. One
half, typified by the Smalltalk community, focused on programming-in-
the-small. They believed that proper focus on well-designed individual
classes was enough to create good software because the system behavior
arose through emergence from the interactions between objects. The other
half remained steeped in the ‘‘big up-front design’’ traditions that pre-
dated object orientation, and turned to CASE tools and methodologies.
Both schools grew during the 1980s, but neither was ever completely
satisfying.

In May 1993 a group met at IBM in Thornwood, New York, to explore
how to build a body of software design literature. In August of the same
year, some of those people, together with a few new ones, met in Colorado
and explored how the ideas of building architect Christopher Alexander
might apply to software design. Patterns provided a breakthrough in
thinking about design that was a relief from both extremes in the object-
oriented community. The idea caught on quickly, but would focus largely
on micro-architectures closely tied to the object-oriented model until some
years later.

164 Chapter 6

But also in the mid-1980s, Trygve Reenskaug was applying the concepts
of roles in design using his OORAM methodology, and published a book
about it in the mid-1990s (Reenskaug, Wold, and Lehne 1995). This work
was one of the main foundations of DCI, which we present in Chapter 9.

C H A P T E R

7
What the System Does: System

Functionality
One surprising by-product of the scenario-planning process is increased

responsibility.

The Clock of the Long Now, p. 118.

Every system has two designs: the design of what it does, and the design
of what it is. End users ultimately care about the services they receive
from the software, and these almost always fall into the what-the-system-
does category. However, the underlying domain model shows through the
service interface. Recall how important the direct manipulation metaphor
is to object-oriented programming. Also, for the sake of keeping down
long-term cost (which customers and end users also appreciate) and of
supporting change (which customers and most end users also appreciate)
the vendor (that’s you) also wants to start off with a good overall system
form, and that form is grounded in what-the-system-is. At the beginning
of a project you need to focus on both. This double-edged focus applies not
only to good beginnings but is the heart of long-term product health.

It is crucial to always remember that the heart of what software delivers
is a service, a service that is about action. Unlike buildings, computers have
animation at human time scales, and this animation is key to their role in
life. Luke Hohmann advises us that instead of architecture being the best
metaphor we have for software system design, that we should look instead
to another one of the arts: dance. Like architecture, dance is also about
form, but it is alive and dynamic. Chapters 5 and 6 gave us our dance hall;
now let’s proceed to the dance.

Given that this is an Agile book, you might have expected the more user-
facing what-the-system-does section to precede the architecture section. We

165

166 Chapter 7

would do that in an ideal world: we would drive design according to the
pure desires of the end user and let nothing else distract us. We investigate
the domain form a bit before discussing functionality in detail because
it is more efficient that way. If the architecture terminology supports
mutual understanding between the provider and user, we can move on to
functionality with confidence – and improved long-term flexibility.

7.1 What the System Does

To decide what the system does, we first need to know Who, What, and Why.
Who is going to use our software? What do they want to use it for? And
Why should they use it? In Agile development the current popular form
of user stories forms around this Who-What-Why mantra. ‘‘As an Account
Holder (who), I want to transfer money between my accounts (what), so
I can ensure that none of my accounts become overdrawn (why).’’

7.1.1 User Stories: A Beginning
User stories are a good beginning, but probably not enough to ensure
a good result. What do we actually know about the Account Holder? If
I am the Account Holder I will use my online banking system to transfer
the money. If the Account Holder is my 11-year-old son, he only has one
account and will not need the functionality. If the Account Holder is my
85-year-old aunt, she will go to the bank and ask a bank employee to
transfer the money for her. If the Account Holder cannot come to the bank,
and doesn’t have access to the Internet, a phone call to the bank would
be the preferred solution. So we need to know more about the Context.
Remember from Chapter 4 that we noted the importance of context in
formulating the problem to be solved. Is the Account Holder an Internet
user, who will do the transfer from home? Does the Account Holder use
an intermediary in the bank to do the transfer? Does the bank want to offer
this service from their ATMs?

A money transfer should be simple. The user chooses a source account, a
destination account, and an amount. The system does a simple calculation
and updates the balance on the two accounts. Two steps and we are done.
Almost . . . we just need to know a few things more: Must both accounts be
in the same bank? What are the consequences of transferring money from
an account that will leave it with a negative balance? Should the transfer
happen immediately? Can the user schedule the transfer to happen in the
future? Can the future be in 10 years? What do we tell the Account Holder
that only has one account, but attempts to transfer money? (‘‘Error’’?) Shall

What the System Does: System Functionality 167

children have access to the feature? Can the user put in a recurrent transfer,
for example once a month?

Maybe you know the answers to many of these questions if you have
been working in a specific bank for years, and if you have deep domain
knowledge. But bank policies are ephemeral and it can be hard to keep up
to date with the current changes. If you are a designer, or even an architect,
it’s likely that someone else on the business side handles questions of
scope. Maybe you think it should be possible to set up a recurring transfer,
and it wouldn’t take you long to code it. But it also needs to have a proper
user interface. It has to be tested. It raises new questions like: How do you
inform the Account Holder if there isn’t enough money to do the transfer?
So it is a business decision, and not a decision based on the developer’s
interpretation of the user story.

We could also explore the why perspective. Maybe the Account Holder
transfers money because another account has a better interest rate, or
because of the tax advantages that come from shifting the money into
another account when going into a new year. Do these things matter? You
don’t really know until you have explored it. However, we do know that
a designer’s implicit assumptions have a huge impact on user interface
design.

7.1.2 Enabling Specifications and Use Cases
These questions illustrate what has become a common experience within
Agile development: User stories are not enough. Agile leaders have been
augmenting use cases with test cases (Cohn 2004, p. 7) and constraints
and business rules (Cohn 2004, p. 77). They even advocate the use of
tools to overcome the text limitations of cards (Cohn 2004, p. 179). And
the stories can be grouped into higher-level business areas, much as use
cases collect scenarios (Patton 2009). As the Agile movement has learned
from experience over the past ten years, the modern user story has in fact
become a use case (Figure 7-1). Alistair Cockburn tells why he still uses
use cases (Cockburn 2008):

User stories and backlog items don’t give the designers a context to
work from . . . don’t give the project team any sense of ‘‘complete-
ness’’ . . . don’t provide a good-enough mechanism for looking ahead
at the difficulty of upcoming work
. . .
Use cases are, indeed, heavier and more difficult than either user sto-
ries or backlog items, but they bring value for that extra weight. . . . In
particular, use cases fix those three problems.
. . .

168 Chapter 7

Figure 7-1 Use cases integrate many user story add-ons.

1. The list of goal names provides executives with the shortest
summary of what the system will contribute to the business and
the users. . . .

2. The main success scenario of each use case provides everyone
involved with an agreement as to what the system will basically
do, also, sometimes more importantly, what it will not do . . .

3. The extension conditions of each use case provide the
requirements analysts a framework for investigating all the little,
niggling things that somehow take up 80% of the development
time and budget. . . .

4. The use case extension scenario fragments provide answers to the
many detailed, often tricky business questions programmers
ask . . . it is a thinking / documentation framework . . .

5. The full use case set shows that the investigators have thought
through every user’s needs, every goal they have with respect to
the system, and every business variant involved . . .

But user stories are just ‘‘a promise for a future conversation,’’ responds
the Agilist. And it is true that it is important to talk about these things. The
question is: What you do with the findings from the conversation? One
output could be even more user stories:

‘‘As an Account Holder I want to put in a recurrent monthly transfer
so I can pay my bills from another account than where I receive my
salary.’’

What the System Does: System Functionality 169

‘‘As an Account Holder I want to transfer money to another Account
Holder so I can pay my rental skis.’’
‘‘As an Account Holder I want to pay my bills over the Internet so
I don’t have to go the post office’’.

We could also create user stories for other user roles such as bank
advisers, accountants, bookkeepers, and tax authorities. We could present
different motivations for the same feature and hope to be able to integrate
them together. If you put five domain experts in a room and brainstorm
user stories, you will get a lot of user stories very fast! That’s a good way
to explore the requirements space. But how do you organize the 200 user
stories you created last week? You need to make a (hopefully ordered) list
based on the relationships between them, their cost, their business value,
and market timing, so that you can make sound business decisions about
when to initiate development on each of them.

Let’s try to help the businesspeople out before things get too messy. And,
no, the help doesn’t come from ‘‘sub-stories’’ (breaking down big stories
into smaller ones) or ‘‘epics’’ (collecting small stories into a bigger ones).
There is no reason to reinvent the wheel. The industry has been through
all of this before, and many of these proven practices honor both Lean
and Agile.

7.1.3 Helping Developers, Too
Much of the discussion about requirements focuses on keeping the business
people happy. We want them to feel they have given us something that
conveys their vision, and we want them to be able to do that without
having to know too much Ruby, C# or Java. It’s easy to forget the customer
of these requirements: the development team.

A developer can in theory put on an analysis hat and get requirements
directly from the horse’s mouth. Such an approach can perhaps work
in a small development project or in an informal business relationship.
Typically, though, developers lack the skills to do good analysis and lack
the business expertise necessary to take accountability for formulating the
requirements that will drive the business. However, we know – both in
Agile and non-Agile development – that the business too often hands off
work to the team prematurely. The team doesn’t really know what the
business wants and sometimes lacks the wherewithal to gain valid clari-
fication. Of course, it’s impossible to create comprehensive requirements
(because of emergent requirements), so we’ll always need some kind of
feedback loop that can keep the product on track after coding has started.

Even so, when a developer gets a requirement, it should be possible to
start development quickly. Requirements questions shouldn’t arise from

170 Chapter 7

the inadequacy of the spec, but rather should come as ‘‘surprises’’ that
emerge during detailed design or coding. A good requirement should
be enabling for the developer. Enabling specifications are not, however, a
substitute for everybody, all together, from early on: rather, they are evidence
that the Lean Secret is in fact in play.

The U.S. patent system uses the phrase enabling specification to describe a
patent that is compelling enough to drive development without significant
new research. In the same sense that a patent enables a craftsperson to
re-create an invention, a requirement should enable a team member to
reduce the need to practice, to the degree possible.

Jeff Sutherland has nurtured this concept of enabling specifications in
Scrum (Sutherland 2009). Jeff says:

It turns out that an enabling specification is exactly what is needed
to maximize the process efficiency of executing a user story. The
average process efficiency of teams executing user stories is about
20%. This means a story that takes one ideal day of work takes five
calendar days to delivery. Systematic Software Engineering, a CMMI
Maturity Level 5 company, has extensive data showing that teams that
drive story process efficiency to over 50% will double their velocity
systematically for every team.

7.1.4 Your Mileage may Vary
If you are a small project, then user stories may carry the day, together with
test cases written on their reverse side, and with a story map adorning a
team room wall (Patton 2009). In this chapter we will discuss many ways
to focus on what-the-system-does: user stories, use cases, features, and
even good old-fashioned requirements. As we have already done, we’ll
challenge a little bit of the conventional Agile wisdom along the way. But
we won’t give you a prescription.

Before we go further, we’d ask you to remember two things. The first
is that the main purpose of any requirements formalism is just to provide
a centerpiece for the face-to-face dialog that happens around it, and that
such dialog is the best chance we have of building the shared perspective
necessary to meet end user expectations. The second advice is that we
provide no final answers, and that we encourage you to experiment to find
what works for you. That may mean challenging yourself and trying out
things you feel that you don’t believe in. It may be worth it, but none of us
can know in advance.

So let’s revisit the Who, What, and Why questions in turn. Our goal
is to go beyond the Agile Manifesto’s ‘‘working software’’ to get usable
software. We will add Lean practices to our agile approaches to reduce the

What the System Does: System Functionality 171

waste of rework. What-the-system-is is the stable part of the architecture and
what-the-system-does is the dynamic part. But even within what-the-system-
does there is a part that we stabilize early – function has form, too – and a
more dynamic part that lives out the ‘‘responding to change’’ part of the
Agile Manifesto. We need both Lean and Agile.

7.2 Who is Going to Use Our Software?

In the beginning there were seldom any real users in Agile user stories
(Jeffries, Anderson and Hendrickson 2001, pp. 25–28). For example:

For each account, compute the balance by adding up all the
deposits and subtracting all the deductions. (Jeffries, Anderson and
Hendrickson 2001)

A lot of things called user stories still don’t have a user. Many organiza-
tions have adopted the user story form ‘‘As a user . . . ’’ but the user never
gets to be anything . . . but a user. The user role was lost in translation. Is
the user me? my child? my 85-year-old aunt? Good user stories clarify user
roles that reflect the analyst’s contemplation of the user’s identity, bringing
a crisp user back into the concept of user story. Agile user stories still don’t
have any story, but that’s another story . . .

Before we go into the user roles, we point out that it is important to
distinguish user roles from the roles in DCI. In DCI it is objects that can play
different roles, so we can call them object roles to avoid confusion.

7.2.1 User Profiles
How do we define a user role? We first take cues from usability. Usability
experts know how to research end user perspectives and how to consolidate
these findings in User Profiles. A use case model represents end user interests
in Actors. An Actor is a user role; therefore a User Profile can map directly
to a use case Actor. The User Profile becomes the Actor description. User
Profiles can of course also be used as the user roles in user stories.

If your organization doesn’t have any usability specialists your team
can still do some valuable user role modeling. Mike Cohn (Cohn 2004,
chapter 3) has a nice four-step recipe of guidance.

7.2.2 Personas
For web applications it has become popular to create Personas. A Persona is
an invented character with specific gender, age, family, profession, hobby,

172 Chapter 7

and everything else that you can imagine to know about the character.
A persona ‘‘is someone you know so well as if you have slept with the per-
son’’ is a popular saying within the Persona fad. A Persona can play many
user roles in relation to your software – like a real person. A User Profile
is not a specific person, but a user role based on facts about the real users.
Personas have names like ‘‘Mary’’ or ‘‘John’’ while a User Profile has a user
role name like ‘‘Database Administrator’’ or ‘‘Teenage Bank Customer.’’

7.2.3 User Profiles or Personas?
Personas can add value to organizations whose software is used by such a
broad audience that it seems impossible to define a limited valuable set of
user profiles – or where focus on users is a new thing for the organization.
Instead of all stakeholders having their own private ‘‘Persona’’ in mind
when they develop the software, they can now share a socialized, concrete
description of a Persona. The risk is that you create software for that specific
person instead of for a user role that many different persons can play.

In more mature organizations, where the team members have disciplined
contact with end users, Personas come across as being unrealistic. They
will be viewed as superficial and too different from the real users that
the team members have encountered. In this kind of organization it is
better to use user profiles than Personas. User profiles are empirically based
characterizations of market segments, and particularly of those segments
targeted by your product (Figure 7-2).

User Profile: Teenage user
Age: 13 to 17
Geographic region: U.S. and Australia
Internet use: School assignments, hobbies, entertainment, news, health issues they’re
 too embarrassed to talk about, e-commerce.
Duty cycle: 85% use the web. Typical web time is 5 – 10 hours / week
Research abilities: Moderate to poor
Reading skills: Moderate to poor
Patience: Low, short attention span
Design considerations: Attracted to great graphics, but good clean page design

Figure 7-2 A User Profile. Adopted from Nielsen 2005.

Sometimes a Persona is too limiting, and the market too distant. You
can use organizational patterns like Surrogate Customer (Coplien and
Harrison 2004, pp. 116–117) to do your best to gain market insight in
cases where you have limited contact with real customers. Constantine and
Lockwood (Constantine and Lockwood 1999) also offer insight on how to
develop reasonable requirements under such conditions. However, strive
to be Agile and elicit ongoing feedback from your end user community.

What the System Does: System Functionality 173

7.2.4 User Roles and Terminology
Words mean things, and good descriptive names can help you converge on
end user expectations. ‘‘Mary’’ and ‘‘John’’ don’t carry much information
as the name of a typical customer. The ‘‘Teenage User’’ (Figure 7-2)
conveys much more information, and can be the basis for a ‘‘Teenage Bank
Customer.’’ Such terms are important not only in conversations between
stakeholders, but also to keep the code readable and maintainable. Yes, you
do use these agreed terms as names in your code! Traditional traceability
that is formalized by tools is dead in Agile development (recall ‘‘individuals
and interactions over processes and tools’’). In Lean development we
replace traceability with careful terminology work. A good user role name
can convey a good understanding of the role. Go out and observe your
users – and you don’t have to sleep with them.

7.3 What do the Users Want to Use
Our Software for?

This is the core of what-the-system-does. The Who and Why part help us
get it right – they give us important Context.1 What-the-system-does can
be described in many ways: as requirements, as dataflow diagrams, as
features, as actors and use cases, as user stories and acceptance tests, as
personas and scenarios, as narratives, as story boards, as prototypes – and
probably many more. When the system does something it implies behavior.
The above techniques describe behavior more or less explicitly. A tradi-
tional requirement formulation could be: ‘‘The system shall transfer money
from one account to another’’. Look familiar? It is not that different from
our user story: ‘‘As an Account Holder, I want to transfer money between
my accounts, so I can ensure that none of my accounts are overdrawn.’’

7.3.1 Feature Lists
Feature lists are yet another approach to capturing functionality. A feature
description for the above requirement might say: ‘‘Transfer money from
one account to another account’’. The word ‘‘transfer’’ indicates behavior
but it is not explicitly described, which leads us to all the kind of questions
we raised in the first part of this chapter.

The difference between a feature and a user story is subtle. In the
beginning, when Kent Beck introduced user stories (Beck 2005), the only

1 Here in Chapter 7 we use the term ”context” more or less in its usual English language sense.
The term has a more contextualized meaning in Chapter 9.

174 Chapter 7

difference between a feature description and a user story was the fact that a
user story was short and handwritten on a ‘‘story card.’’ In the Agile world
today most user stories are written in a computer tool like Excel or perhaps
with a tool more explicitly tailored to that purpose. It is difficult to see the
difference between a feature list and a list of user stories, except that the term
user story is socially more acceptable in shops that view themselves as Agile.

7.3.2 Dataflow Diagrams
A dataflow diagram (DFD) – yet another alternative – would have a high
level process called ‘‘Transfer money’’ with the data (e.g. amount and
balance) flowing in and out from the process. The process is decomposed
into sub-processes such as: ‘‘Define source and destination account’’,
‘‘Move money’’, and ‘‘Do accounting’’. The decomposition stops when
the lowest level process can be called an ‘‘atomic’’ process (cannot be
decomposed further). Dataflow diagrams can work well for a solo analyst,
but they don’t have a good track record to communicate knowledge
between members of a development team. It’s too easy to get lost in the
many levels of decomposition.

7.3.3 Personas and Scenarios
Personas often go together with scenarios. A Persona scenario describes
a specific scenario for that Persona. If the Persona is ‘‘Mary,’’ and she is
a 32-year-old single mom to 2-year-old Benjamin and 4-year-old Laura,
working full time as a doctor’s assistant – then the scenario can describe
how Mary uses an ATM on her way home from work to transfer money
from a savings account so she can pay a bill for a car repair. A Persona
scenario focuses on what buttons Mary pushes and on what menu items
she selects.

7.3.4 Narratives
A narrative2 could use the same approach as for Personas but avoids
creating a specific stereotype, instead developing a short story to explore
system functionality. For example, we can invent a hypothetical person
named Mary on the fly. She could be a trainer of police dogs. Her car
is at the repair shop and she has her two police dogs in one hand and

2 We use the term narrative so as not to confuse this kind of story with user stories. Alistair
Cockburn uses the term usage narratives for stories that are reminiscent of the scenarios in a
Persona and Scenarios approach. He avoids the term story in this context for the same reason: to
avoid confusion with Extreme Programming user stories.

What the System Does: System Functionality 175

Benjamin on her arm. It is raining and there are 10 minutes until Laura’s
daycare closes. Here the story would be a vision of how the ATM could
help Mary in this specific situation without focusing on the details of the
user interface of the ATM. But the story can help us to be aware that there
will be other requirements to the user interface than for the person doing
bank transactions from the computer at home. The narrative focuses on the
context (see Cockburn 2001, p. 18).

The narrative could have two parts: a before and after, that describe
Mary’s trouble before and after the bank gave her an easy way to transfer
money. So we can have a problem narrative and a vision narrative that
helps us understand the user’s (or the business’s) motivation. Using the
combination of personas and scenarios clarifies the user’s motivation, but
it describes the user interface in kind of a convoluted, indirect way.

7.3.5 Behavior-Driven Development
User stories lack explicit behavior. A popular way to compensate is to add
acceptance tests on the back of the user story card. It means that some of
the questions we had in the beginning of the chapter will be answered
as acceptance test criteria. For example ‘‘Test: if source account becomes
negative after the transaction, the transfer will not be allowed.’’ There will
probably be more acceptance test criteria than there will be room for on
the card, and they will be described somewhere else.

This shortcut approach suggests that we move the what-the-system-does
insights into the test descriptions. That is exactly what Behavior Driven
Development (BDD) (North 2006) is. In BDD, user stories are input to test
scenarios that specify what the system does. The programmer codes the
test scenarios directly in a test tool, and – voila! Now the programmer is in
charge of the requirements. Maybe that is one step further than we want to
go now. We don’t want to lose our business domain experts and usability
specialists in our eagerness to code. Code speaks very nicely to coders, but
maybe not so well to the rest of the world.

7.3.6 Now that We’re Warmed Up . . .
Let’s back up a few steps and see where we’re at. We have techniques to
describe what-the-system-does that lack explicit behavior: traditional require-
ments, feature lists, and user stories (when used without acceptance tests).
Then we have Personas and Scenarios that do have behavior, but which
are limited to only a few specific examples. The rest of the behavior is left
to the imagination of the programmer. Narratives are just stories that can
give us a good shared understanding of the motivation. But you cannot test
narratives, so they are a very incomplete statement of what the system does.

176 Chapter 7

Prototypes

Maybe we should try simulating the situations in which these requirements
arise. Prototypes are a great way to explore and test parts of what the system
does. A prototype can test a user interface concept, parts of the functional-
ity, or even performance or technical feasibility. An architectural prototype
can also be very useful. Storyboards are a versatile usability technique. They
were originally used to support design, but have also served well to validate
the team’s assumptions about the workflow for specific system functions.
The team starts with storyboards that capture their vision of a user work-
flow and later proceed to validate their assumptions in a real environment.

Towards Foundations for Decisions

These are all good warm-up techniques: to begin the conversation, to
brainstorm, to envision. Pick your favorite(s) and get on with it – until
you are ready for consolidation. Architectural direction begs consolidated
input. Consolidation ensures that the right people make the right decisions
at the right time. Brainstorming and envisioning are both helpful and
necessary, but they are divergent thinking techniques, and decisions should
eventually precipitate from convergent thinking techniques. These are both
business decisions and architectural decisions; the two go hand in hand.

Known and Unknown Unknowns

So what is our level of consolidation if we want to be both Lean and Agile?
We don’t want to do everything up front; that wouldn’t be Agile. We don’t
want to defer decisions ‘‘to the last responsible moment;’’ that wouldn’t
be Lean. So we first of all need to know what decisions we must make
to get the architecture right, and what decisions that we should defer. It
would be useful to have a framework to organize those decisions. The first
step is to separate the known knowns from the known unknowns, making
the known unknowns as visible as possible. In the spirit of emergent
requirements, we can’t predict when the unknowns will become knowns,
but we want to leave room for these realizations.

We also have to tuck away the fact in the back of our head that unknown
unknowns lurk out there. Prototyping can help flesh these out by making
them known unknowns or sometimes by eliminating the uncertainty
altogether, as can the stakeholder dialog that comes with the ‘‘all hands on
deck’’ mentality of Lean development. A sound domain architecture can
reduce the cost of what-the-system-does requirement changes by limiting
long-term rework to the overall form of the system. But before we deal
with such surprises, it pays to have a framework that organizes what we
do know.

What the System Does: System Functionality 177

Use Cases as a Decision Framework

Use cases are one example of such a framework. Use cases only make sense
if your software supports a user’s workflow. As a counter-example, it is
hard to make use cases for a simple text editing system because you don’t
have consistent workflows. The same is true for systems without much user
interaction, like industrial control systems and the embedded software in
your car or clothes dryer. Maybe you have experiences with techniques
that can help you to consolidate with these kinds of systems – perhaps
using state machines, decision tables, and cause-effect charts. So which of
these might you use instead of use cases? The answer is: It depends. We’ll
come back to this question in Section 7.7. For now we want to share our
experiences with use cases as a Lean technique to consolidate what the
system does.

Use cases get a bad rap. In spite of having a reputation of being
heavyweight, use cases support Agile development very well. They are
a powerful way to convey enabling specifications. Just think increments
instead of up-front specification, and collaborative game (Cockburn 1999)
instead of big up-front requirements analyst.

Let’s investigate why the user wants to use our software before we go
into consolidation.

7.4 Why Does the User Want
to Use Our Software?

Before we answer this question it can be good to think about another
question first:

Why does the business think the user wants to use our software?

Businesspeople deal with broad and diverse constituencies. In Scrum
you have a product owner who balances all stakeholder interests in your
software. End users are stakeholders, but for many businesspeople the
customer – the paying stakeholder – is often more important than the
end user. Even more important than the customer can be the enterprise
itself – how does our company best thrive in the long term? The first step
is to recognize these differences. It is amazing how many organizations
lack a crisp picture of the difference between a customer and an end user
(and it’s furthermore stunning how many are completely out of touch
with end users).

Narratives can be a good way to explore the interests of those we care
about. In the example above with Mary as a single mom who wants to

178 Chapter 7

transfer money, the first focus is on helping Mary. But maybe Mary would
prefer that the bank had open hours outside of her working hours, so she
can go in and talk to a real person who could do the transfer for her (and
another one who could hold the dogs and the kid) – of course without
having to wait in line. So the motivation for the bank is maybe not so
much to help Mary, but to avoid expanding the opening hours, or maybe
to make more employees available to serve other customers in person. The
bank wants to provide services to their customers in a way that saves them
money and lets the customers do the work themselves – without losing
business to their competitors. To motivate the bank customer to be loyal to
the bank, it is a good idea to see them in context as end users. When we
book airplane tickets we take the vendor who can both offer cheap tickets
and provide us with an easy-to-use web site.

In the Scrum framework a good product owner will communicate the
different stakeholders’ motivation to the team. One way to do it is to tell or
write narratives. Another is to give a stirring talk about the new product
or service which, as one product owner told us, he found to be the most
effective way to do it after twenty years of experimenting.

Use cases can be a concise, organized way to communicate these moti-
vations. Each use case has a business motivation and a user motivation or
intention as the introduction. A good old-fashioned stakeholder analysis
works too. A lot of confusion and lack of motivation in development teams
can be traced back to the fact that the team doesn’t know why they have to
do what they are doing. It also makes it difficult for team members to make
informed decisions. And you cannot write everything down – that’s one
reason why Agile became popular. Let the people – and the code – talk.

7.5 Consolidation of What the System Does

So what criteria do we have for consolidation of what-the-system-does?
Usable software is the key, and we need to know our users to build it. We
collect data about our users and create User Profiles – or user role descrip-
tions, or actor descriptions, or Personas – depending on your organization
and culture. They tell us something about who the user is. But we also
want to know what the user does – the user’s behavior. Storyboards are a
way to validate our assumptions about the user’s behavior. The scenario
part of personas and scenarios gives us an example of how we envision
users using our system. The narrative gives us a vision of why we want the
functionality. Dataflow diagrams can help us understand . . . the dataflow.

The part we want to focus on in relation to the user’s behavior is the
user’s workflow, and how we want to support that workflow with our
software: what the system does. In order to response to change we need

What the System Does: System Functionality 179

to develop our software in small chunks such as iterations or Sprints. We
incrementally build our software in a way that lets us adjust and respond
to change between iterations. When we respond to change we want to
know where we are, otherwise we are just reacting, not responding. We need
a baseline. A baseline is coded and tested software that is ready for an
internal or external release. Test is the keyword here. Teams should test the
user workflow they want to support during each iteration. We want test as
close to development as possible.

Requirements emerge – both externally and internally. The world and
the business change, and because someone just changed their minds,
requirements change. We learn more while we work with the domain
and the system, and requirements change somewhat more. We work
incrementally and come to new corners of the system. All this means that
we take decisions about the functionality all the time. To avoid discussing
the same issues over and over again we need to document our decisions
about what the system does. We can of course change our decisions, but
then we know from what and to what.

In the end many decisions will be documented in the code. That’s fine.
It might better be said that these decisions will be encoded in the code,
and decoding is often no fun. One goal of the techniques in this book –
particularly of domain-driven design and of the DCI architecture – serve
the end of code intentionality: expressing the programmer intent in the
code. It is important to have a shared language to document decisions,
and that language rarely can be the programming language. After all, it
is not all stakeholders that have programming languages as their primary
language. And lots of meetings and meeting minutes aren’t always the
answer, either (who reads those any more?). So we need this framework
that helps us navigate important decisions about functionality.

For now, we don’t talk about decisions that the programmer can make;
they are best documented as code. We talk about decisions that involve
other stakeholders – especially the businesspeople such as Scrum’s product
owner.

Emergent requirements also call for decisions and we need a home for
them as well. In traditional requirement specifications we don’t really
have room for emergent requirements – they are closed. User stories and
features can in principle just grow for every new requirement, but that
strategy causes you not to be able to see the forest for the trees. When do
you have a duplicated user story? When is it just an overlap with another
user story? How can you validate what you are missing? This approach
works with very small and simple systems – for example, web pages where
you can release a new version every day and get immediately feedback.
Your decisions are documented on the web page, and your users test it.
This is a nice, simple context.

180 Chapter 7

The final thing you would like for what-your-system-does is that chunks
of functionality be small enough to make release planning easy. What
does release planning have to do with architecture? You want to know
what functionality will challenge the architecture, and what functionality
is just more of the same. One option at the disposal of the business is
to pull architecturally risky functionality into an early iteration to avoid
unpleasant surprises in a later iteration. This is one example of where
you as an architect need to help the product owner to order the product
backlog. You will be the one who knows if this risk reduction is necessary.
It goes against the principle of naı̈ve Agilists that the easiest things be
tackled first, but that’s a relatively minor issue relative to Agile’s view of
anything architecture-focused.

Our criteria for consolidation of what-the-system-does therefore has the
following elements:

1. To support the user’s workflow (usage scenarios);
2. To support test close to development (test scenarios);
3. To support efficient decision making about functionality (sunny day

scenario (also known as the main success scenario) versus deviations);
4. To support emerging requirements (deviations);
5. To support release planning (use cases and deviations);
6. To support sufficient input to the architecture (terms and concepts

from the scenarios);
7. To support the team’s understanding of what to develop.

We have already revealed that use cases are one solution. But they
aren’t the only solution. Think about the above criteria. Do they fit your
development context? What other techniques have you successfully used
that served you well? Use your common sense!

We could have chosen to call it something else than use cases – maybe
coining a fancy Japanese word – and could tell you that this is the new
Lean requirement technique. It would probably have taken you some time
before you recognized it as use cases. But we like transparency and will
simply illustrate with an example. The goal is not to teach you to do use
cases; the existing literature provides a bounty of good sources (Adolph
et al 1998; Constantine and Lucy 1999; Cockburn 2001; Wirfs-Brock 1993).
Our purpose is to show how the use case technique can help you in an
Agile and Lean development environment, without having to reinvent
techniques in order to call yourself Agile or Lean. We don’t pretend to show
you a perfect use case example. The process around the use case is more
important than the use case itself.

What the System Does: System Functionality 181

7.5.1 The Helicopter View
Now you have warmed up and are ready for consolidation. Maybe you
have a lot of user stories, and maybe some prototypes. Your businessperson
has given her motivational talk, or your whole team has shared vivid
narratives. You have a lot of input, and first you want to organize it and get
an overview. What did our warm-up sessions teach us about the context?

Let us move away from the outdoor ATM and head indoors where it
doesn’t rain, and think of ourselves as citizens that want to do bank trans-
actions from our home computers. The bank is not the evil moneymaker
any more, but our partner in trying to make life easier for us. So what
main services would we like the bank to offer us to do from home over the
Internet? I’d like to be able to transfer money, view my latest transactions,
add new regular payments, print account statements, and pay bills. A lot of
other things came up during brainstorming, but these are the core services
that the product manager thinks are important to start with. We could just
call these ‘‘services’’, or ‘‘epics’’, or ‘‘overall requirements’’, or ‘‘features’’,
but we prefer to call them use cases.

In order to call them use cases each of them should support a goal for
the user, so we first of all need to define the user: in use case language
this is the actor. During our brainstorming sessions we have explored the
boundaries: Is age 11 too young? Is 85 years too old? Is it only private
persons, or does it include professionals? Do we give access to a customer
who has a loan, but no bank account in our bank? (do they exist?). We
decide to call the actor ‘‘Private Account Holder.’’ If we don’t have a good
description of that actor, we make it a high priority to develop one. We
now have a simple overview:

Private Account Holder

View latest transactions
Transfer money
Print account statements
Add regular payment
Pay bill

We want to make the first consolidation of the helicopter view. This will
be the container within which most of our what-the-system-does decisions
will belong, so we want to stabilize it as early as possible. One thing that
we like early is a name for our system. Let us call it ‘‘Greenland Net Bank’’.
Together with the actor description and the core use cases, it should give
us a good picture of the overall context for the system.

While looking at the list of the use cases or maybe while thinking about
how the first use case should begin, we notice that we need a login service.
That is a classical discussion in use case land: Is ‘‘Log on’’ a use case? In

182 Chapter 7

most situations the answer is no. Remember we noted above that a use case
has a goal in context. As a user I don’t achieve anything by just logging on.
I wouldn’t be happy to tell my family about my day by saying ‘‘I really did
something to day – I logged on to my bank ten times’’.

On one hand, logon is a necessary evil that is a precondition for something
else. On the other hand, it’s important to banking transactions. It is not
only in the bank’s interest that the access be secure, but it is also in my
interest as an Account Holder. The logon procedure for banks can entail
as many as four or five steps, so the system and the actor really have to
do something. And we don’t want to repeat these steps at the beginning
of each use case. Can we defer the decision about how it should work?
We could wait and take the decision later on, then our discussion can end,
and we can move on. But why defer it? We will probably not get any more
information that can help us. If we add services to an existing system, and
logon functionality has already been established there, we are all set. Then
we can just state: ‘‘the Account Holder is logged in’’ as a precondition in
all use cases. If we have to change existing logon procedures, adding a new
way of logging on, or don’t have the functionality yet, then we have to do
something. It is an important requirement. Use your common sense.

It could be a situation where common sense leads us to actually make
the logon service a use case in itself. That’s against good use case practice
because logging on lacks a goal. Security must be a core business compe-
tency of ‘‘Greenland Net Bank.’’ We need to bridge the shared concerns
of the business and the programmer for good system security, and it can
help to communicate the concerns in a use-case-like manner. It is not that
important if we end up with a logon use case or not. What is important is
that we have discussed it and built consensus about the decision, so we all
know why we have a logon use case or not.

Habits: The Developer View and the User View

As developers we learn to avoid redundancy, because duplicated code is
unmaintainable code. In analysis, it’s a different story. Use cases focus on
context, and if we repeat clarifying functionality in many use cases we don’t
care. When the repetition makes it too hard to keep updates consistent
(because we have to edit the same content many times) then we have to do
something. But we don’t remove redundancy before we have to. Factoring
out redundancy is a design activity and design is better expressed in other
tools than use cases.

You are all working together with the business perspective on one hand
and the developer interests on the other. Programmers and businesspeople
view use cases differently. When a bank officer reviews a use case, he or
she may want to see that all proper logon steps are there. It’s important

What the System Does: System Functionality 183

to authenticate the user with a password. It’s important to see that this
flow will allow the user to retrieve a password hint. It’s important that
we know the programmer will be led to the business rules about ensuring
an adequately hard password. It doesn’t matter whether these steps are
consistently duplicated elsewhere: safety bears repeating. Besides, it would
be difficult and even confusing to develop an authentication use case in
isolation, because a good use case always plays out in the context of its
goal. To talk about logging on in the absence of any goal leaves the business
steps too context-free.

To the programmer, on the other hand, such repetition would, in the
worst case, lead to unnecessary duplication of code. Computer science
spent years developing formalisms called procedures just for the occasion,
so a single closed copy of code can be ‘‘reused’’ at many points of invocation.
But now the programmer bears the burden of comparing each new logon
sequence with the old ones, line by line, to ensure that the same closed
copy of the logon procedure applies in the new deviation as applied when
the code was written. The contexts must be compatible, and questions
of context require subtle clarification from the business when they arise.
That’s a waste of time.

It can be useful to compromise here and treat authentication as a use-
case-like-thing, but one that is the purview of the programmer rather than
that of the business folks. We call such a pseudo-use case a habit. We give
it this name to distinguish from a use case. It is a developer tool to support
design, and it lives largely in developer land. Habits are structures that help
the team ask the right kinds of questions to make sure everyone is on the
same page – the Lean goal of consistency. Remember, use cases (and habits
as well) represent the requirement, but the answer of whether they actually
are the requirement awaits end user feedback in the running system.

Habits help solve the long-running problem that use cases are often too
detailed for the business and not detailed enough for the developers. That
historically drives the business to user stories and the developers to test
scripts. Rather than solving the problem, those fixes just widen the gap.
Habits factor out recurring chunks of use case detail; that leaves more
concise use cases for the business. Developers can take these repeatedly
invoked chunks and use them to gain enough insight into the scenarios
to conceive algorithms to implement them (Section 9.4.2). The algorithms
need no intermediate representation: program code is fine. The business
can continue to work at a higher level.

A habit isn’t quite the same as the use case includes relationship because
we don’t want to destroy the understandability of the use case. Their
primary purpose isn’t to factor information from the use case to remove
redundancy; instead, habits add detail in the same that business rules do.
It’s common to separate out business rules and other supporting details

184 Chapter 7

from use case descriptions. The use case is the information clearinghouse
that points out other details you need, and the habit is one of these. Habits
differ from nicknames (see Section 5.4.1) because their focus is more on
activity than on data. Habits aren’t quite algorithms because they can have
a degree of non-determinism – sequencing decisions that don’t matter,
which as such are left to the programmer or the technology (just as can
be true of use cases). Habits tend to be partial orderings of steps, and can
represent business rules, algorithms, or steps in a use case.

In Figure 7-3 we show a scenario for Move Money and Do Accounting
using a modified use case form that we’ll call ‘‘habit form.’’ The name,
‘‘Move money,’’ reflects a level of detail. Contrast that name with ‘‘Transfer
money,’’ which implies a business transaction, whereas ‘‘Move money’’ is
more mechanical. The habit lacks an intent and a motivation; we can get
those from each enclosing use case. (The intent and motivation can differ
across the use cases that invoke Move Money and Do Accounting!)

Habit Name: Move Money and Do Accounting

Preconditions: A valid Source Account and Destination Account have been identified,
and the amount to be transferred is known

Sequence:

1. Greenland Net Bank verifies funds available

2. Greenland Net Bankupdates the accounts

3. Greenland Net Bankupdates statement info

Post-conditions:
 The periodic statements reflect the exact intent of the transaction (a transfer is a
transfer — not a pair of a withdrawal and a deposit)

Figure 7-3 Move Money and Do Accounting Habit.

Though Figure 7-3 communicates important requirements, it satisfies no
business goal in itself. The developer cares about it because it is a recurring
common block of logic, so it is good a foundation for the DCI structures that
implement what-the-system-does. Though the habit has no business goal
it is an important collection of detail that may recur in multiple use case
scenarios. Making this fragment into a habit satisfies both constituencies’
needs for a single closed copy.

Habits should not have variations. First, it is difficult to conceptualize
how a variation at this level generalizes across all the use cases employing
the habit. Second, it can too easily lead to replicated and potentially
conflicting descriptions of the variation in the use case and the habit. Keep
variations in the use cases.

The pre- and post-conditions for a habit tend to be written at a low level.
They can drive a design by contract approach (Section 6.1.2) in the code.

What the System Does: System Functionality 185

They are specific to the code and can drive unit tests for that code. Take
care not to add preconditions or post-conditions that would be invalid for
any use case using the habit. Also, keep the business-oriented pre- and
post-conditions in the use case: duplicating them can lead to redundancy
and inconsistency.

Trimming the Scope

How about printing statements? Does the Account Holder really need to
be able to print account statements? That is the businesspeoples’ call. The
development team can perhaps convince the business about the benefits of
delaying this service until Greenland Net Bank faces the broader issues of
document handling. Now we have an updated list:

Log on
View latest transactions
Transfer money
Add regular payment
Pay bill

Private Account Holder

‘‘This is too simple’’, you may think. ‘‘Five use cases and I have the
overview? The system I am working on is much more complicated.’’ But
this is actually realistic. The complexity lies in the variations within use
cases, so is not reflected in the total number of use cases. If a single team
has more than 15 use cases in its helicopter view, something is wrong! You
are probably also in trouble if the product has to manage more than 240
use cases at once (Cockburn 2008).

If you have more use cases than that, then maybe you have an unreal-
istically long release plan (like, a year to the first release?). Or maybe you
have defined your use cases at an overly detailed level. Or maybe you
have included use cases that only have other systems as actors, and not
user roles representing real human beings (there are better notations than
use cases to that end). Most projects balance about eight use cases well.
Choose actor names as well as use case names with care; you have to live
with them for many months or years.

Involve all key stakeholders when creating and refining use cases. Remember
the Lean Secret. You want to involve the whole team including both
developers and testers – because they are going to have to understand the
context and detail well enough to implement and test them. You want
the business, represented by a product owner, product manager, or the
like. You want the architect and the usability specialist (if you have any).
And you want domain experts, no matter what they are called in your
organization. The consolidation of the helicopter view can be done in a
couple of hours – if you are already warmed up. That’s Lean.

186 Chapter 7

7.5.2 Setting the Stage
There can be other actors you want to add to the stage, such as the existing
bank software that Greenland Net Bank depends on. Dig a bit into this.
If you haven’t done it already, you should identify the people you have to
work with who represent these systems. Add these system actors to your
helicopter view if it improves your overview.

It is time to consolidate the business motivation and the user intention.
This is done on a per-use-case basis. Let’s take the Transfer money use case
as example:

Business motivation: ‘‘As a part of our strategy Empower customers
to do their banking business from home we see money transfer as an
important service. The Account Holder can keep an eye on their
accounts, and can transfer money to an account that is getting low, or
that the Account Holder knows will get low soon. It can save us (the
bank) time we use on sending letters when an account is overdrawn,
and it can also save us closing (and later re-opening) accounts. As an
expanded service we would also like the Account Holder to be able to
transfer money to other Account Holders’ accounts – both within our
bank and to and from other banks. Our competitors already provide
that service, and we cannot wait too long to offer it as well.’’

Maybe your team and the rest of the stakeholders only need the first
sentence written down because you already know the business motivation
well, and you just need a hint. It is not so much how you document it. It
is to make sure that all stakeholders know the business motivation. Use
common sense.

User intention: ‘‘As an Account Holder, I want to transfer money
between my accounts, so I can ensure that none of my accounts
become overdrawn and my debit card is closed’’.

Yes, you can put in a user story here – or several user stories – or
something else. Use your imagination. You are in good shape when the
business motivation and the user intention point in the same direction and
aren’t in conflict.

To set the stage it’s important to scope the use cases in relation to each
other. You want to know what conditions surround a use case scenario
when it starts up, and what conditions you can expect at the end. Often
a post-condition of one use case is the precondition of another. Scoping
therefore also helps to validate your helicopter view. It also provides a
foundation for the first business scoping that you need for a rough release

What the System Does: System Functionality 187

plan. We do this by adding a precondition and a post-condition to each use
case. Continuing our Transfer Money example:

Precondition: ‘‘The private Account Holder is logged on to Greenland
Net Bank, and an overview of the Account Holders accounts is present
on the screen.’’
Post-condition: ‘‘The amount that the private Account Holder entered
is moved from source account to destination account. The two
accounts balance, and the transaction logs are updated’’.

In the first part of the consolidation phase we are in ‘‘sunny day scenario’’
mode. We focus on how things happen when they go well. We can later
carry these pre- and post-conditions in to the code, as we discussed in
Section 6.1.2.

Your product owner is now ready for the first raw release plan:

Release 1: Log on and View latest transactions
Release 2: Transfer money
Release 3: Add regular payment
Release 4: Pay bill

We can of course not put dates on yet, but it is a good beginning, and it
implies an ordering of work. The stage is set, but nothing is moving yet.
Let’s play.

7.5.3 Play the Sunny Day Scenario
Remember? Good use cases are about increments and collaborative games. We
don’t want to specify everything at once, but embrace the Lean principles
of just-in-time work. And we don’t want analysts writing use cases at their
desk, but want them to become the centerpiece of a focused conversation.
Begin with the sunny day scenarios for the use cases of the first release.
The first release in our example contains the ‘‘Log on’’ and the ‘‘View
latest transactions’’ use cases. Both ‘‘Log on’’ and ‘‘View’’ use cases can
be problematic in an ideal use case world because the user goals are not
obvious, but we sometimes allow them for reasons we described earlier.
We won’t detail the description of the release 1 use cases here. Instead we
will continue our example with the sunny day scenario of the ‘‘Transfer
money’’ use case of release 2.

When it comes to define the steps of a sunny day use case scenario many
Agile people give up and call use cases too heavy, but it is a crucial and
worthwhile investment. It requires thinking, discipline, and decisions to
ensure progress. Thinking, conversation and discipline just provide the

188 Chapter 7

basis for decisions. The use case scenarios help us to know what decisions
we need to take. Think about who will take the decisions, and when, if we
don’t take them now.

When you are inclined to postpone a decision, ask yourself: ‘‘Is this a
decision that the programmer can make while coding?’’ If the answer is yes,
it is fine; then leave the decision to the programmer. If the answer is no, ask
yourself if you can take the decision now or if you need more information
first. If you need more information make sure to get it in a timely fashion.
Early decisions are the Lean approach while late decisions are the Agile
approach. Structured use case descriptions developed incrementally can
help us to know the right time for a decision.

A structured use case description begins with:
■ a table3 with one column for step numbers, one for the use case actor,

and one for the system responsibility:

Step Actor intention (Constantine and
Lucy 1999)

System responsibility (Wirfs-Brock 1993)

1.

■ the actor name or system name at the beginning of every step:

Step Actor intention System responsibility

1. The Account Holder selects a source
account and chooses to transfer
money.

The Greenland Net Bank shows source
account, provides a list of destination
accounts, and a field to enter the amount.

■ terminology that is carefully and consistently thought out and written
down:

Step Actor intention System responsibility

1. The Account Holder selects a source
account and chooses to transfer
money.

The Greenland Net Bank shows source
account, provides a list of destination
accounts, and a field to enter the amount.

2. The Account Holder selects a
destination account, enters the
amount, and accepts.

The Greenland Net Bank moves money,
does accounting, and shows the Account
Holder a receipt for the transaction.

3 The table’s two-column format is inspired by Rebecca Wirfs-Brock. She introduced the idea of
conversation into use cases by having the user’s action in the left column and the systems reaction
in the right column. The names of the columns are taken from Constantine and Lockwood (1999)
and their idea of essential use cases where you ensure to leave UI design details to the UI designer,
and system design details to the system designer. UI design and system design are expressed
much better in tools other than use cases.

What the System Does: System Functionality 189

Stop! This is important:

The terms and concepts you choose to use in the use case scenarios
are input to the architecture.

This isn’t just the find-the-nouns exercise we did to find classes in the old
days. Remember, this is input to what the system does (see how it works in
Chapter 8 and Chapter 9). Good names keep the connections to end users
and other human beings alive.

A step is not a step before the system has reacted on the actor’s action.4

Think as a user: do you feel that a system has done anything, if you don’t
get any sign of activity from the system? Or think as a tester: does it make
sense to test the actor’s selection of a destination account before the actor
has entered the amount and accepted the transaction? The tester maybe
wants to test that the system shows a valuable list of destination accounts,
and that can be done after step 1. Whether it makes sense to make a separate
test scenario for step 1 or to make a test for the whole ‘‘sunny day scenario’’
is at the tester’s discretion. But the structure is provided now, and the tester
can begin to script test scenarios at the same time as the developer begins
to design and code. This parallelism reduces your development latency.

Two steps, and we are done with a sunny day scenario for one use case.
Is it that hard? The hard part is not so much the format – the team can learn
that. It is more the discipline of thinking and of decision-making. We have
to decide what terminology we want to use. To document these decisions
we may need a glossary. A domain can gain a lot from not only having
a glossary per team, but to have a shared online terminology document.
A glossary for here and now could be seen as an Agile approach, while the
online terminology document would be the Lean approach; we wouldn’t
have to discuss the meaning of the same terms over and over again.

Other key decisions remain. Should the Account Holder choose to do
the transfer action before choosing the source account – or the other way
around? Who takes that decision and when? This should be the decision
of a UI designer. In the collaborative game you have that person on board
to help you take these kinds of decisions. All right, maybe not . . . Then
keep the wording so flexible as possible with respect to the order in which
things happen.

For example, in step 1 we don’t tell if the actual implementation will be
noun-verb or verb-noun. The action and account are both accounted in the
same step and the specific order really doesn’t matter from a use case point

4 There can be some exceptions where we can play with an empty step for the user intention: for
example to indicate when the user has to wait for the system to do its part.

190 Chapter 7

of view, because the business doesn’t care about the order. In the use case
we focus on the overall workflow, the back-and-forth from actor action
to system reaction, from a business perspective. If the actor has to enter
and/or select a lot of information in the same window, we still consider
it one use case step. The UI designer has to design the window in a way
that makes is most usable for the actor. And the user interface should fit
the user’s mental model as closely as possible. You build and test-drive
prototypes of the user interface to ensure that. These prototypes work well
as a parallel activity to the use case definitions.

If you haven’t got lost in UI details now, you maybe pondering other
questions: Does this sunny day scenario include transfers to accounts other
than those belonging to the Account Holder? Does ‘‘other accounts’’ mean
other accounts in this bank, or in all banks? Does ‘‘all banks’’ mean banks
in this country, or in all countries? Please call your product owner! Oh,
your product owner is already here. Good! Then we can move on. First of
all you want to track the status of your decisions. We do that by adding a
comment or question column to the use case step (Table 7-1).

Table 7-1 Scenario with commentary.

Step Actor Intention System Responsibility Comment

1. The Account Holder
selects a source
account and chooses to
transfer money.

The Greenland Net Bank
shows source account,
provides a list of
destination accounts,
and a field to enter the
amount.

Should the Account
Holder choose to transfer
money first and then the
account – or the other
way around?

2. The Account Holder
selects a destination
account, enters the
amount, and accepts.

The Greenland Net Bank
moves money,
does accounting, and
shows the Account
Holder a receipt for the
transaction.

What are the rules for
destination account?
(own account, other
accounts, other banks?)
Is receipt the right term?
Do we need a receipt if it
is among Account
Holder’s own accounts?
Does the Account Holder
need to be able to print
the receipt?

Note that use cases are a tool to support the playing of the collaborative
game. It is not a one-man show to write a specification. We want everyone
to be a part of asking the questions and to help take the decisions. Then
we all know the reasoning behind the decisions, and we can move much
faster during implementation. Everybody, all together, from early on.

What the System Does: System Functionality 191

The big questions like the ‘‘other account’’ question should not only be
hidden in a column like this. The business owns this decision, and it is
closely related to release planning – and architecture. What does release
2 – Transfer money – entail? Does it transfer money only to and from the
Account Holder’s own accounts? And if we expand to other accounts will
it still be the same use case? Here we have to go back to investigate the end
user mental model. Does the Account Holder care about the differences
between ‘‘other’’ accounts?

The authors’ bank doesn’t think that we as Account Holders have a
different model for our own accounts, other accounts in the same bank, and
accounts in other banks. They all show up on the same list of ‘‘destination’’
accounts as soon as we have entered an account number and have given it
a name. So that’s the model we as users carry with us. If it is our bank that
has been teaching us to have that model in mind, or if we had it before is
hard to tell. But it seemed natural to do it like this, so maybe it was right
from the beginning.

Things might get complicated only when we want to transfer money
to a bank in another country. It’s not that different for us as Account
Holders, but clearly very different for the bank as business. Again we
need both usability specialists and business domain experts to develop
the expectation. From the usability point-of-view we can investigate the
user’s mental model in relation to accounts. Is a ‘‘destination’’ account just
another account, no matter who owns it in what country? Maybe that’s the
conclusion. Then the business domain expert can say that its underlying
business processes and business rules differ so radically from the domestic
case that it could be an impediment in design and implementation to
include it in the same use case. Use common sense. A likely outcome could
be that all domestic account transfers for private Account Holders will
be in the use case Transfer money, and another use case, Transfer money
to international bank account, will take care of the transactions to other
countries. If we overlook the usability issue in this decision we risk a user
interface as in our bank that doesn’t make it obvious where to go to transfer
money to another country.

Business Rules

Did we hear someone ask about business rules? That is a big part of the
banking business, as well as many others. Do we express business rules in
use cases? Banks classify customers according to business criteria such as
credit history, debt, and net worth, and apply different rules to different
classes of customers. How much can your account be overdrawn before
the bank reacts? How long will the bank go to inform you before they close

192 Chapter 7

your credit card? Will the bank automatically transfer money from another
account of yours if there is money on it?

These are all business rules. A use case shouldn’t invoke customer
categories every time you touch a service that differs according to customer
type. You might start by defining common terms (ones that you hopefully
already use in the business) such as ‘‘customer type.’’ Then you can create
a place where you can look up what customer types you have in the
business. Whether it is part of your glossary, your data dictionary, or your
description of business rules depends on what makes (common) sense in
your organization.

Business rules can be named and referenced from a use case as well.
We can for example name a business rule Overdrawn. Then you can
have a business rule dictionary that tells what Overdrawn means for each
customer type. Changes in business rules are a common source of emerging
requirements, and business rules are another example of knowledge that
typically is documented outside the programming language.

Maybe your domain is more technical and business rules are not a big
deal. Maybe you have complicated algorithms instead. The same principle
applies here: name the algorithms and document them somewhere else
where you can find them and easily update them.

Algorithms, business rules, data dictionary, UI design, glossary . . . it
doesn’t sound very Agile? Well, if you can do fine without – and still
develop usable software that survives the competition, then good for you.
Our experience is that you risk discussing the same things over and over
again and/or you leave important business and usability decisions to the
developers alone at their keyboards. It’s risky to leave business decisions
to developers working in isolation – not to mention the amount of rework
this will cause. Such rework maybe feels Agile, but certainly isn’t Lean.

We haven’t forgotten: during our work with the sunny day scenario we
adjusted our helicopter view:

Log on
View latest transactions
Transfer money to domestic bank account
Add regular payment
Pay bill
Transfer money to international bank account
Print account statement

Private Account Holder

We added the new use case for international money transfer. And then
the Print account statement use case came back? Why? During the discus-
sion about the transfer use case it became clear that these kinds of decisions
were important for the architecture (Section 5.2.2), which is something we
didn’t realize before. So though these use cases won’t all make it into the first
four releases they still can have an impact on architecture, so we don’t want

What the System Does: System Functionality 193

to hide them. Key use cases can inform the form even of what-the-system-is.
The product owner’s updated release plan could look like this:

Release 1: Log on and View latest transactions
Release 2: Transfer money to account in our bank
Release 3: Add regular payment
Release 4: Pay bill
Release 5: Transfer money to other domestic bank
Release n: Print account statement
Release n+1: Transfer money to international bank account

Now Release 2 is easier to predict and handle than it was before. But we
still have a ways to go before we can put dates on the release plan. And
why do we talk so much about the user’s workflow? Two steps – not a lot of
workflow to me! Just wait, because we’ve covered only the simple founda-
tions so far. The really interesting stuff is about to come in the next section.

7.5.4 Add the Interesting Stuff
The main reason to consolidate the sunny day scenario early is to establish
a structure for deviations. Everything that deviates from the sunny day
scenario is a new use case scenario within the use case. When we have
added two new deviations, we have added two new scenarios – at least.
When we begin to combine several deviations together with the sunny day
scenario it can blossom into many scenarios. But, what is a deviation? It
is all the things that we have discussed and decided weren’t part of the
sunny day scenario. It includes all the things that we haven’t thought about
yet – the unknown unknowns. And it is a lot of our emerging requirements.

So let’s move back into brainstorm mode for a while. Our use case
is now named Transfer money to domestic bank account, and we want to
list everything we can think about that will deviate from the sunny day
scenario. That means that we have to decide what our default assumption
is for the destination account list in the sunny day scenario. What kind
of transfer will we see most, or as a bank business will we support most
often? Let us say that the priority is to transfer money between the Account
Holder’s own accounts. The business makes some decisions, informed by
the developers, and we can update our sunny day scenario (Table 7-2).

The only changes are in the comment column, because that feels like the
obvious place to document our decision, or that part of the decision. The
decision about creating a new use case for international money transfer is
documented in the fact that the new use case exists at all. The rest of the
decision – other domestic accounts – is partly documented in the extended

194 Chapter 7

Table 7-2 Transfer money: the sunny day scenario.

Step Actor Intention System Responsibility Comment

1. The Account Holder
selects a source
account and chooses to
transfer money.

The Greenland Net Bank
shows source account,
provides a list of
destination accounts,
and a field to enter the
amount.

Should the Account Holder
choose to transfer money
first and then the account,
or the other way around?
By default the Greenland
Net Bank shows a list of
Account Holder’s own
accounts (except for the
source account).

2. The Account Holder
selects a destination
account, enters the
amount, and accepts.

The Greenland Net Bank
moves money,
does accounting, and
shows the Account
Holder a receipt for the
transaction.

Is receipt the right term?
Do we need a receipt if it
is among Account Holder’s
own accounts? Does the
Account Holder need to be
able to print the receipt?

name of the use case, and will be further documented in the deviations of
the use case Transfer money to a domestic bank account. Let’s brainstorm
some deviations:

■ Transfer money to domestic account other than own account (does it
matter what bank?)

■ Save information about other bank account and add it to the
destination list

■ Check if there is enough money to transfer (what message if not?)
■ Print receipt (open issue)
■ Ask for password before transaction (mandatory?)
■ Account Holder only has one account (message?)
■ Amount is too small (any rule?)
■ Amount is too big (any rule?)
■ Schedule the transfer at a later date
■ Remove added destination accounts
■ If transaction lasts longer than 15 seconds?
■ If transaction fails? (for what reasons?)

With businesspeople, testers, developers, usability specialists, and
domain experts around the table, this list can grow fast (Table 7.3)! There
are ever-new questions to ponder. If we need a password to accept the
transaction, is that yet another step in the sunny day scenario? What are
the rules for valid amounts? There are countless things to clarify, and

What the System Does: System Functionality 195

Table 7-3 Transfer Money use case deviations.

Ref. Step No. Action Causing Branching Comment

1a. The Account Holder wants to
transfer to another Account
Holder’s account.

The Account Holder needs to
enter a registration number and
account number.

1b. The Account Holder wants to add
another Account Holder’s account
to the destination list.

The Account Holder can name
the account (mandatory?)

2a. There is not enough money on the
source account to do the transfer.

Give an error message, and
forego the transaction. (Who is
in charge of messages to
Account Holder?)

2b. The Account Holder accepts
transfer to another Account
Holder’s account.

The Greenland Net bank asks for
password before accepting the
transfer.

2c. The amount doesn’t pass the
validation rules.

Validation rules?

2d. The Account Holder enters a later
date for the transfer.

The Greenland Net Bank
provides an option to enter a
later date. The transfer will
happen at that day according to
bank days. (How long into the
future can the date be set?)

2e. The transaction takes longer than
the accepted minimum time.

Reasons for while it take longer?
Actions when it does? Accepted
minimum time?

2f. The transaction fails. Reasons for failure? Actions to
recover? Appropriate messages?

countless decisions. And then again: there is much consolidation. Some of
us love tables (Table 7-4).

Every time we consolidate, we answer some questions and take some
decisions. And we ask new questions, and we get more to decide. That’s
the nature of progress in software development. Most deviations belong
to a specific step in the sunny day scenario. We refer to that step in the first
column. What is the difference between this list of deviations and a list of
requirements, or features, or user stories? Not a lot when we look at them
one by one. We could formulate each of them as user stories, if that would
make us feel more Agile. ‘‘As an Account Holder I want to be stopped
if I transfer more money than I have on my account so I don’t overdraw
my account’’.

Well, maybe it’s not the best user story in the world. The user story form
could help us to see who the real stakeholder is here: ‘‘As a bank I want

196 Chapter 7

Table 7-4 Adding room for emergent requirements.

Ref. Step No. Action Causing Branching Comment

1a. The Account Holder wants to
transfer to another client’s account.

The Account Holder needs to
enter registration number and
account number.

1b. The Account Holder wants to add
another account holder’s account to
the destination list.

The Account Holder can name
the account (mandatory?)

1c. Emergent requirement . . .

1d. Emergent requirement . . .

2a. There is not enough money on the
source account to do the transfer.

Give an error message, and
forego transaction. (Who is in
charge of messages to Account
Holder?)

2b. The Account Holder accepts transfer
to another Account Holder’s
account.

The Greenland Net bank
requests a password before
accepting the transfer.

2c. The amount doesn’t pass the
validation rules.

Validation rules?

2d. The Account Holder enters a later
date for the transfer.

The Greenland Net Bank
provides an option to schedule a
transfer some number of
banking days in the future.
(How far into the future can the
date be set?)

2e. The transaction takes longer than
the accepted minimum time.

Reasons for while it take longer?
Actions when it does? Accepted
minimum time?

2f. The transaction fails. Reasons for fail? Actions to
recover? Appropriate messages?

2g. Emergent requirement . . .

2h. Emergent requirement . . .

to stop my customers from transferring money that they don’t have so I
can stay in business’’. No, that doesn’t really work either. Use common
sense. You are also welcome to handwrite the deviations on index cards,
and put them on the wall (or in a box) – then you can call it a user story in
its original meaning.

For now we will continue to call such situations deviations from the sunny
day scenario. And what we really get from linking the deviations with the
sunny day scenario is structure. We can now discuss a step in a sunny day
scenario. We can even focus on the system part of a step in a sunny day

What the System Does: System Functionality 197

scenario where we anticipate architectural challenges. Or we can discuss a
deviation and its consequences. It provides focus to discussions towards
good decisions. And it gives our businessperson some structured input to
the release plan. To plan Release 2 in better detail, the businessperson can
now examine the deviation list and decide which deviations must be in
Release 2, and which deviations can wait.

As soon as we have stabilized a sunny day scenario, the team can
estimate it. And after that can the deviations be estimated when they are
stabilized. The use cases will grow. It’s not so much that we add more
use cases – that will be the exception. And it’s not because we add to the
sunny day scenario – that is also rare. Use cases grow because we keep on
adding deviations.

Here is a key point: We can add deviations incrementally! These deviations
are our real scope: extensions, exceptions, alternatives, variations, error
handling, and nonfunctional requirements. This is where much of the
revenue-generating work comes. Can they all be one-liners? Maybe. Our
experience is: most of the time. That’s why most product developments
more or less get by with user stories, except they too often lose track of
the relationships between them. Other than that, keeping things small and
simple is how we keep it Agile. Use common sense.

If we can add use case scenarios incrementally, then we can introduce
them into releases incrementally, and we can code them up incrementally
and deliver them just in time. This incremental approach supports a key
Lean tenet. And it goes without saying that it supports the Agile agenda of
responding to change.

How about our emerging requirements? See Table 7-4. The empty rows
await emerging requirements. Most emerging requirements come in the
guise of deviations to a sunny day flow. Once in a great while we get an
entirely new use case. Knowing the scope of the change helps us know
the order of magnitude we have to deal with. Most of the time when
we add or remove a whole use case, it is caused by growing knowledge
about the nature of our use cases or even about the domain. Sometimes
a new use case emerges from an existing use case, as we saw when the
use case Transfer money gave birth to a new use case Transfer money
to international account. Sometimes we merge two use cases because we
realize that they are not different – maybe one of them is just an extension
(deviation) of the other one.

At this point it is prudent to relate a warning:

Warning! If you are inclined to divide a use case such as ‘‘Transfer
money’’ into three use cases: ‘‘Select accounts’’, ‘‘Transfer money’’,

198 Chapter 7

and ‘‘Do accounting’’ you are decomposing and are better served
using decomposition tools such as dataflow diagrams.

Wait a minute! Our security specialist looks over my shoulder: ‘‘The
Account Holder has to enter password only when accepting a transfer to
another account? Isn’t it part of the sunny day scenario? It should be!’’
Why? Does it make sense to ask for password when you transfer money
between your own accounts? ‘‘It is our policy. We should always ask for
password before a transaction.’’

How does that fit our user’s mental model? We ask the usability specialist.
‘‘There is another principle going on here: consistency’’ our usability
specialist says ‘‘So we can probably introduce passwords for all transfers
without disturbing the user’s mental model. Especially if we do it from the
first release before end users have formed habits.’’ Our sunny day scenario
got a step more (Table 7-5).

It’s good that we realized early that we need this extra step! We want
our sunny day scenario to be as stable as possible. Otherwise it is hard to
handle the deviations – which we now must revisit in light of this latest
change. Our deviation (2b) where the system asks for password before
transfer to another account goes away. Do we delete the row and renumber
the rest of the deviations? Do we mark the deviation as deleted or moved
to sunny day scenario, but keep the row? Use common sense. The decision
is documented anyhow. You create supplementary documentation only if
you want a record of why the decision was made, by whom, and maybe
when. We have to renumber the deviations anyhow. Have fun identifying
how many changes we have made to our deviation list (Table 7-6).

Remember: the richness of use cases comes in the deviations, and they
come freely and frequently. They are where the variation happens. We
consolidated the sunny day scenario early to establish a structure for
deviations: that’s the commonality. The main success scenario of a use case
is its stable business characterization and changes rarely if ever. It provides
an anchor for the deviations, and the deviations are what give us growth
in functionality.

You can also have fun finding five faults (like the children’s game of
finding differences between two pictures). It requires many eyes – and at
least one tester – to keep the use case descriptions consistent.

But we would rather let you use time on another exercise:

Identify all terms and concepts from the sunny day scenario and the
deviations that you think will affect the architecture.

What the System Does: System Functionality 199

Table 7-5 Adding the password step.

Step Actor Intention System Responsibility Comment

1. The Account Holder
selects a source account
and chooses to transfer
money.

The Greenland Net Bank
displays the source
account, provides a list of
destination accounts, and
a field to enter the
amount.

Should the Account
Holder choose to transfer
money first and then the
account, or the other way
around? As default the
Greenland Net Bank
shows a list of Account
Holder’s own accounts
(except for the source
account). When Account
Holder adds other
accounts they will show
up on the default list for
that specific Account
Holder.

2. The Account Holder
selects a destination
account, enters the
amount, and accepts.

The Greenland Net Bank
shows the transfer
information (source
account, destination
account, date, amount)
and requests a password
to approve the transfer.

The default date is the
current date.

3. The Account Holder
enters the password and
accepts the transfer.

The Greenland Net Bank
transfers the money,
updates the accounts, the
statement info and the
transaction log. The
Greenland Net Bank
issues a receipt for the
transaction.

Habit: Move money
and do accounting. The
Greenland Net Bank
verifies funds available,
updates the accounts, and
updates the statement
info. (Defines transfer and
accounting.) Is receipt the
right term? Do we need a
receipt for the Account
Holder’s own accounts?
Does the Account Holder
need to be able to print
the receipt?

And what about the product backlog if you are using Scrum? A deviation
is usually a nice-sized product backlog item. A sunny day scenario should
only be one product backlog item in itself. A half-sunny day scenario
doesn’t add a lot of business value. If a sunny day scenario is more than
one person can do in a half Sprint, then you can divide the sunny day
scenario into steps, but you don’t deliver any business value before all the
steps are implemented.

200 Chapter 7

Table 7-6 The deviations updated.

Ref. Step No. Action Causing Branching Comment

1a. The Account Holder adds a text to
the transaction on the source
account.

Shouldn’t this be a part of the
sunny day scenario? What is the
default text if the Account Holder
doesn’t add a text?

1b. The Account Holder wants to
transfer to another Account
Holder’s account.

The Account Holder needs to enter
registration number and account
number.

1c. The Account Holder wants to add
another Account Holder’s account
to the destination list.

The Account Holder can name the
account (mandatory?)

2a. There is not enough money on the
source account to do the transfer.

Give an error message, and forego
the transaction. (Who is in charge
of messages to Account Holder?
Define minimum account balance?)

2b. The Account Holder adds a text to
the transaction on the destination
account.

Isn’t this in the sunny day scenario?
What is the default text if the
Account Holder enters none?

2c. The amount doesn’t pass the
validation rules.

Validation rules?

2d. The Account Holder enters a later
date for the transfer.

The Greenland Net Bank provides
an option for enter a later date. The
transfer will happen at that day
according to bank days. (How long
into the future can the date be set?)

3a. Password fails. Standard procedure?

3b. The transaction takes longer than
the accepted minimum time.

Reasons for while it take longer?
Actions when it does? Accepted
minimum time?

3c. The transaction fails. Reasons for failure? Actions to
recover? Appropriate messages?

All The Account Holder looks for
online help.

Who is responsible for online help?

7.5.5 Use Cases to Roles
Businesspeople, usability specialists, testers and developers work on use
cases together. Developers can’t really develop an implementation only
through documents and handoffs. In particular, it’s important to give
developers the opportunity to exercise feedback both to clarify their
understanding of the end user motivation and need, and to relate their

What the System Does: System Functionality 201

expertise about implementation constraints. Together, the expectations of
both sides may evolve.

What are often just clarifying definitions to the business are software
artifacts to the developer. We want to establish a path from the former
to the latter. Use cases encourage good terminology that provides the
traceability, and the DCI architecture provides a place to express this
terminology in code.

Roles from the Use Case

Look again at Table 7-5 above (page 199). We find step descriptions
such as:

1. The Greenland Net Bank displays
the source account, provides a list
of destination accounts, and a
field to enter the amount

Should the Account Holder
choose to transfer money first and
then the account, or the other way
around?

Notice that we have italicized source account, destination account and
amount. From a pure use case perspective the italics might designate a defi-
nition in the domain dictionary, and that helps the business clarify its needs
to itself. But to the developer, these terms provide strong implementation
hints. DCI strives to capture such concepts directly in the code. In the imple-
mentation we call them object roles to distinguish them from use case actors.

The use case helps us understand the responsibilities of these roles. For
example, we can deduce from above that source account should provide
information that can identify itself to the Account Holder. That becomes
a responsibility of the source account object role. As we go deeper into the
use case and its transfer of money we will find more responsibilities for the
source account, destination account, and other object roles. Exploring these
responsibilities may cause us to expand or refine the use case.

This is a simple example with only ‘‘Greenland Net Bank’’ as the name
of the system. More commonly, more systems will be named in the system
column (and of course there may be more actors in the actor problem).
Each of these systems has responsibilities with respect to the use case. In
many cases these system names will also become object roles.

For example, consider a new service that allows an Account Holder to
take a loan from the bank over the net or at an automated teller machine.
The use case involves the Loan Department as a system that must approve
the loan request (perhaps automatically in real time). From the point of
view of the main use case, whose discussions are primarily between the
Account Holder and Greenland Net Bank, the Loan Department is just

202 Chapter 7

another role. The software folks will want to view it that way, too. It will
become an object role in DCI.

Does the team define these roles as part of analysis or part of design?
Does this discussion belong here in Chapter 7 or in Chapter 9? Ah, such
are the deep questions of life. And we don’t care. Remember: the whole
team works as one so that the business can inform the developer and the
developer can inform the business. Everybody, all together, from early on.
Experience will teach you the details of this process.

Bridging the Gap between the Business and the Programmer

In Figure 7-3 above, we introduced the concept of a habit, which captures
a recurring use case fragment in closed form. In classic use case style,
the software-side responsibilities accrue to ‘‘the system,’’ or, if we are
more selective in our terminology, ‘‘the bank.’’ These terms convey little
new insight either to the business people or the developers. Rather than
resorting to general-purpose business-speak, and to avoid resorting to
terminology like abstract base classes or database transaction logs, we can
use better metaphors to describe these concepts. In particular, we can
communicate many of these metaphors as object roles. Object roles are
programmer constructs in the DCI architecture that reflect parts of the end
user mental model.

In Figure 7-3 above, we use the rather sterile term ‘‘Greenland Net
Bank’’(‘‘the system’’) for everything the software does. This leaves the
end user without much insight into what is going on, and leaves the
programmer with an overly broad and nebulous notion of the context.
Consider this alternative representation of the sequence:

1. SourceAccount verifies funds available.
2. SourceAccount and DestinationAccount update their balances.
3. SourceAccount updates the statement info.

This model makes metaphorical sense to the end user. Further, it helps
the programmer close the feedback loop to ensure that he or she shares
the end user’s mental model. Here, the new concepts SourceAccount and
DestinationAccount are not use case actors, but are actor-like agents inside
the Greenland Net Bank system – object roles. They will become software
concepts in the implementation, represented by abstract base classes or
other interfaces. What do they interface to? Objects. Just as a use case actor
is a role perspective on some human being, so an object role is a behavioral
slice of a software object. We’ll explore object roles in depth in Chapter 9.

Use this approach selectively, remembering that all analogies (and
metaphors) break down somewhere. Don’t force a metaphor unless the
team seems to need a concept to latch onto, or a vision that will move
dialog and understanding forward.

What the System Does: System Functionality 203

7.6 Recap

Did we achieve our criteria for consolidation? Let us recap. Our goal was:

1. To support the user’s workflow (usage scenarios);
2. To support test close to development (test scenarios);
3. To support efficient decision making about functionality (sunny day

scenario versus deviations);
4. To support emerging requirements (deviations);
5. To support release planning (use cases and deviations);
6. To support sufficient input to the architecture (terms and concepts

from the scenarios);
7. To support the team’s understanding of what to develop.

7.6.1 Support the User’s Workflow
We have stabilized the sunny day scenario and decided on the three
steps – and their order – that the user and the system have to perform
together to get the desired result. The deviations that we have defined
so far belong to a specific step in the sunny day scenario. When the use
case grows incrementally through the deviations, we have to decide where
each one belongs in the flow. It keeps us conscious about the workflow
we support. Do we know if the system will support the best workflow for
the user? Ask your usability specialist – or do what he or she would have
done, and carry out a usability test.

7.6.2 Support Testing Close to Development
As soon as we have stabilized the sunny day scenario the tester (or system
engineer (Section 3.2.1)) can begin to define test scenarios. If the tester feels
comfortable enough to begin to write or script test scenarios you know
your use case is in pretty good shape. The tester’s activity will add many
valuable deviations to the use case. The structure of the test scenarios is
already given by the relationship between the sunny day scenario and the
deviations. Now it is just up to the tester to define which of the scenarios,
and especially, combination of scenarios, that makes most sense to test. That
decision is a core competence of testing. You don’t risk that requirements
support one structure, design and code another, and test a third. The
solutions to this dilemma has historically fallen into two categories:

1. The classical solution is to have test wait doing the test scenarios until
usage scenarios have been coded. Result: delays in development and
test as an afterthought (I think most of us have been there).

204 Chapter 7

2. The ‘‘Agile’’ solution where tests are written before the code. Result:
a) Requirements are expressed in test scripts and we loose business,
usability, and other stakeholders that don’t talk in code. b) We dig
into details too early. c) We will lack the tester’s competence of what
is important to test, and just do a ‘‘test all’’ thing and risk getting a
false sense of security.

The use case scenarios help ensure that we are all on the same page before
we code and test the scenarios. The system design and test design can
happen in parallel, and we are ready to test as soon as a scenario is coded.

7.6.3 Support Efficient Decision-Making
about Functionality
The examples in the text support this and hopefully convince you that
we have the support we need for decision-making. The current status of
the sunny day scenario, the deviations, the wording of each scenario, and
the comments and questions, all reflect the current status of the decisions
you have made about what the system does. When you need to take a
new decision you know the exact context: the right use case, whether it is
a sunny day scenario or deviation, which step in sunny day scenario, or
which deviation. That supports efficient decision making immensely!

7.6.4 Support Emerging Requirements
A use case can emerge or be merged with another. When it merges it
is because we realize that two use cases are basically the same. If you
experience that often, it is a red flag: your use cases are too detailed
from the beginning. A more organic way to work with use cases is to let
them emerge: one use case can grow out of another use case. Be careful
not to let it happen prematurely – then you risk the merge problem later.
You’ll get a sense that it is premature because the emergent use case will
seem immature. But the most common emergence will happen on the
deviation level. We add and sometimes remove deviations along the way.
The deviations will be implemented in different iterations depending on
the product owners’ ordering of the product backlog (if we are in Scrum
land). In other words: the deviations are the nicely sliced units that we can
use to make our release plans realistic.

7.6.5 Support Release Planning
When we have identified our maximum of more or less 15 use cases, we
are ready for the first raw release plan. After we have consolidated the

What the System Does: System Functionality 205

sunny day scenario and brainstormed the deviations we can make a bit
more detailed release plan. The release plan is ready for dates when the
sunny day scenarios and the most important deviations are estimated.

Once the release dates have been fixed, it is a question of working on the
most important items for each release. By nature the sunny day scenario
is the most important of any use case. To implement a deviation before
the sunny day scenario is not common sense. After that it is a business
call to decide which of the deviations are required before a release. What
makes use cases long is the list of deviations, not the sunny day scenario – it
shouldn’t be more than 7 steps long, and is shorter most of the time. But we
can easily get 30 to 50 deviations per use case (just think error handling),
and the number of scenarios can grow exponentially with every deviation
added. So the real complexity and scope hides in the deviations. We rise to
the occasion with our flexibility and ability to be Agile. The deviations are
the units we can play with when we make changes in priority and order,
when we handle emerging requirements, and when we take care of the
consequences for our release planning.

7.6.6 Support Sufficient Input to the Architecture
The use case descriptions help us to be conscious about concepts and termi-
nology. To be conscious about concepts and terms require understanding. To
do a good architecture we need to understand our system. We extract the
terms and concepts from the use cases and use the words consistently in our
architecture and code. It helps us to get readable code, as we will see that the
use cases drive the code form when using the DCI architecture (Chapter 9).
Readable code is maintainable code. Maintainable code helps the architec-
ture to last longer. Good architecture that last longer, makes developers
more happy and business more valuable. We love happy endings.

7.6.7 Support the Team’s Understanding
of What to Develop
A few more details are required to ensure a happy ending. To understand,
the team must be involved. You can have the best use cases in the world
written by the best analyst in the world. If the team hasn’t been a part of
the process, the use cases are useless. The team has to start all over again
in order to understand. It is not because your team is stupid. It is because
90% of the knowledge is now in the analyst’s head, and the rest is maybe
in the use cases. If user stories are a ‘‘Promise for a future conversation,’’
use cases are ‘‘Reminders for discussions and decisions’’ about what the
system does. The good thing is that they are structured reminders!

206 Chapter 7

So when Kent Beck (Beck 1999, p. 90) says ‘‘Business writes a story’’ and
Scrum emphasize that the product owner is responsible for the product
backlog, please don’t read this as saying that the business writes user
stories in isolation and the product owner creates the product backlog
without involving the team. All that does is to re-introduce the ‘‘throw it
over the wall’’ specifications to Agile and Lean development. ‘‘Throw it
over the wall’’ is the main reason why waterfall development has so bad a
reputation today. Lean is about not having stovepipes, or walls over which
things are thrown. Agile is about individuals and interactions. Let’s be in
the spirit of Agile and Lean: everybody, all at once, from early on.

7.7 ‘‘It Depends’’: When Use Cases are a Bad Fit

A use case captures a sequence of events – a collection of related scenarios –
that take the end user toward some goal in some context. What if you have
difficulty expressing a user interaction in that form? Sometimes, use cases
are a bad fit. If you look at a scenario and you can’t answer the contextual
questions, ‘‘Why is the user doing this?’’ and ‘‘What is his or her motivation
in context?’’ then use cases are probably a bad fit for your domain (or you
aren’t well-enough connected to your users!) If it’s the former, you should
seriously explore alternative formalisms to capture requirements.

What alternatives, you ask? It depends is the answer. Some designs in fact
are dominated by such operations. Think of a graphical shapes editor that
features ‘‘use cases’’ such as rotating, re-coloring, re-sizing, creating and
deleting objects. From a use case perspective, these are atomic operations.
Though each of these operations may require multiple end-user gestures,
each is still a single step in a use case. The number of gestures or mouse
clicks required to achieve a goal is a user interface design issue, not a
requirement issue. Moving an object, or re-coloring it, is not an algorithm
in the mathematical or even vernacular sense of the word; it is atomic. If
there is no business need to group such operations together, then each is a
command in its own right and we really don’t need use cases. The user is not
working with a sequence of tasks to reach some goal in a context. Each command
reduces to a primitive operation on the domain object itself, and MVC alone
with its direct manipulation metaphor is enough to get the job done If you
choose use cases to capture the input to a system dominated by atomic oper-
ations, you’ll end up with hundreds of use cases that belabor the obvious.

7.7.1 Classic OO: Atomic Event Architectures
One way to explain the success of object-oriented programming is that
it rode the coattails of graphical user interfaces and mice. These human

What the System Does: System Functionality 207

interaction styles captured our imagination and led to computing as a
companion thinker rather than as a distant subcontractor. The human
satisfaction with immediate feedback, the speed (or at least the illusion
of speed) with which one could drive to a solution, and the human-like
behaviors of these interfaces at Xerox PARC paved a path for Smalltalk’s
influence on the world.

The link between this user engagement and Smalltalk in particular, or
object orientation in general, is more than incidental. There is a continuum
of representation from the end user’s mental model of the world, to the
graphical interface, to the structure of the objects beneath the interface.
The idea is that the user manipulates interface elements in a way that fools
his or her mind into thinking that they are manipulating the objects in the
program – or, better, the real world objects that those programmatic objects
represent. To place an item in one’s shopping cart in an online bookstore
gives the end user, at least metaphorically, the feeling of actually shopping
with a shopping cart. This is sometimes called the direct-manipulation
metaphor (Laurel 1993). We’ll later talk about the Model-View-Controller-
User architecture (Section 8.1) as the most common way to create the
illusions that support this metaphor.

To get something done on a direct manipulation GUI, you first choose
an object (like a book) and then ‘‘manipulate’’ it (put it in your shopping
cart). It feels awkward to instead first say, ‘‘I’m going to buy a book’’ and
then select the book. This is because we are thinking about the book before
the actual doing of deciding to purchase. We probably wouldn’t have come
to the website if we had to dwell on the question of whether we wanted to
buy a book. This is called a noun-verb interaction style: we choose the noun
(the book) first, and the action (to buy) second.

Notice the close correspondence to our architecture, which has a what-
the-system-is part (the books) and what-the-system-does parts (the use
cases such as: buying a book, finding earlier editions of the book, and
retrieving reviews of the book).

The noun-verb metaphor leads to interfaces that take us through a
sequence of screens or contexts. When we select the book, we are in the
context of thinking about that book. The book has a physical representation
on the screen (as a picture of the book, as its ISBN, or its title and author)
that fills our conscious mind. The conscious processes of our mind focus
on that object. There are many things we can do with that object, and
our thinking process leads us to where we want to be. Only then will we
‘‘execute a command.’’ The ‘‘command’’ is something like ‘‘put this book
in my shopping cart’’ and on most graphical interfaces we would enact the
scenario by pushing a button labeled ‘‘Add to shopping cart.’’

This means that the object on the screen (the book) is like the object
in the program, and from the screen we can see how to manipulate that

208 Chapter 7

object in the ways that make business sense (put it in the cart, retrieve
reviews, etc.) Those are, in effect, the member functions on that object. The
customer works, and invokes commands, in a very focused context: that
of the object. The object becomes the command interpreter – one primitive
operation at a time.

This style of interaction in turn leads to the architectural style that we
call atomic event architectures in this book. Such a style focuses on the objects
and what we can do with them, rather than on the ‘‘scenarios’’ that exist
in retrospect as the collection of these events and commands. We can take
the context for granted. More precisely, we focus on the roles that the
objects can play in the current context (though a book can play the role of
a doorstop, we focus on a different role when purchasing a book online).
We give users choices, allowing them to interact with programs in an Agile
way: one choice at a time. If we focused on the scenario instead, we’d have
a master plan that would preclude choosing different books in a different
order, and which would remove the user’s option to change course at any
time (to just forget the current book and go onto another, or to take a book
back out of the shopping cart).

7.8 Usability Testing

Usability testing focuses on the interaction between the end user and the
system, ensuring that typical end users who fit within the user profiles can
accomplish what they need to accomplish. Good usability testing requires
the skills of specially trained and experienced testers. User experience
people perform such tests by giving end users sample exercises or tasks
to do, and they monitor the interactions between the end user and the
envisioned system. They note carefully what screens are involved in the
use case, and what interactions transpire between the user and the system.
What this testing does for the architecture is to validate whether we’ve
captured the end user mental model.

Product organizations too often defer usability testing until after the
software is done, treating it like an acceptance test. By then, it’s too late. If a
fundamental change to the interface is needed, it signals a lapse in properly
capturing the end user mental model. That can mean that the architecture
is built on the wrong concepts. If the conceptual underpinnings are wrong,
it will take more than refactoring to recover. That may mean delaying
the current release or postponing the fix to a later release. Too often the
necessary changes affect the basic form of the architecture so much that
the cost is prohibitive, and the end users must live with the problems in
perpetuity.

What the System Does: System Functionality 209

Instead, usability testing should be used as a forward-engineering
technique. Use the insights that usability testing gives you into the
interface models to fine-tune your architecture. This can be difficult in
traditional organizations because there is often a wide gap between archi-
tects, implementers, and user experience people. But if you’re a Lean
team – everybody, all together, from early on – you have the organizational
foundations for this feedback loop.

You can go one step further by combining usability testing with dynamic
architecture testing, using CRC (Candidate object, Responsibilities, and
Collaborators) cards (Beck 1991). Bring together your team and have each
team member play the role of one or more objects in the system. Each
team member holds an index card representing either a system domain
object, or a system role or object role as we introduced in Section 7.5.5.
The facilitator asks the end user to run through a use case scenario. As the
user tells of performing some gesture (pushing a button on the screen or
pulling down the menu) the appropriate role or object rises to the occasion
by providing the necessary service. These responses are the responsibilities
of the object or role’s public interface; the team member writes these down
on the left column of the card as they arise. If a role or object requires the
cooperation of another role or object to further the transaction, then the
corresponding team member is asked to carry on the ‘‘execution’’ and to
write the appropriate responsibility on his or her card. When the first team
member hands off control to the second, he or she writes down the role or
object of the second in the right-hand column of the card. It is useful to use
a talking stick or cat toy or other ‘‘sacred artifact’’ as the program counter
in this exercise.

When you’re done, compare what’s on the cards with what’s in the
architecture.

7.9 Documentation?

The first thing to remember is that your main goal should be that the team
is talking together. Everybody has some set of insights, and everybody
needs the insights of others. Traditional organizations make it difficult to
build the network of connections that allow all the right insights to find
their proper homes. User stories are a kind of cultural artifact that teams
can use as focal points for the discussions that lead to a shared vision of the
job to be done. As Mike Cohn says, user stories represent the requirement
rather than being the requirement. Use cases are the same to a degree,
but also provide a structure for requirements and a record of how that
structure, and its requirements, came into being. The written literature of a
culture provides foundations that an oral culture cannot, and much of the

210 Chapter 7

value of use cases is to concretize decisions, in particular decisions about
the why of design.

Given that context, the use cases themselves are important Agile doc-
uments. Remember that documents serve two purposes: communication
in the now, and corporate memory in the future. Use cases as a form help
structure thinking in the now. They provide a place to track dependencies
between yet-to-be-implemented items on the product backlog and for
work in progress on the Sprint backlog in Scrum. That’s part of being an
enabling specification.

Whether use cases should be maintained as historic documents is a
matter for individual projects to decide. You want to keep use cases if
they codify important learnings to which the team may want to return in
the future. Sometimes you want to remember why you did something a
certain way when the reasoning may not be obvious from the code itself.
A good example is code that deals with a side effect from an interaction
between two use cases. Perhaps keeping use cases around will save rework
in development, to re-inventing the reasoning and mechanisms that were
understood when design decisions were made in the past. Therefore,
throwing away the use case wouldn’t be Lean. So if you have a need for
such history, and if you have a way easily to recover such documents on
demand, you might consider keeping them.

Keep a little data on how often you go back to old use cases. Once
in a while, both of us authors go through our closets at home and are
astonished at how many of our clothes we haven’t worn in one or two
years. It’s always a hard decision to take them to charity because we want
to save them for sentimental reasons. But we have limited closet space.
And it costs your project time to keep use cases around and to keep them
current. If you find that archived use cases haven’t seen the light of day in
a few months, stop keeping them. Clean your closet. It’s part of the Lean
principle of keeping your workplace clean.

One alternative to keeping use cases in the long term is the idea of
‘‘disposable analysis,’’5 where the use case serves the communication
function without the overhead associated with its role as an archival
artifact. If that’s the case, throw the use case away after it’s coded up. To
keep it around isn’t Lean.

Even end user documentation has value. When you walk up to an iPod,
you don’t yet have a mental model of what it is. It’s an MP3 player,
it’s an iTunes interface. If a new customer comes to the iPod from a
different MP3 player it’s important to establish iTunes as the place where
you do configuration and management, and that the iPod may be much
simpler than your old MP3 player. That’s a paradigm shift for the end

5 Thanks to Paul S. R. Chisholm for this delightful term.

What the System Does: System Functionality 211

user – a shift that they may be unable to make by themselves. Lightweight
tutorials and examples can help establish the metaphors that support good
user experiences. Of course, deeper interaction models (up means louder
and down means softer) should be built-in and should not depend on
documentation to be useful.

7.10 History and Such

Ivar Jacobsson pioneered use cases in 1992 (Jacobsson 1992) and tried to
offer them to the market through his methodology, Objectory.

Rebecca Wirfs-Brock was one of the first who moved beyond high-level
graphical conceptualizations of use cases to describing what actually goes
on inside of a use case. She later pioneered the two-column description of
conversations in terms of actors and actions (Wirfs-Brock 1993). Rebecca’s
format has been adopted neither by RUP nor by Alistair Cockburn, but
has been embraced in the usability world (e.g. Constantine and Lockwood
1999). It is used in practice in many organizations and is our preferred
form in this book.

Use cases have been a part of UML from about 1995 – from the very
earliest days.

Alistair Cockburn re-interpreted use cases and started to bring his
vision into the software world through his book Writing Effective Use Cases
(Cockburn 2001). Cockburn’s vision is completely in harmony with the
Agile vision he nurtured as one of the organizers behind and signers of the
Agile Manifesto. Rebecca’s interpretation of use cases is also completely
compatible with Agile.

The XP community (whose origins date from around 1997) viewed the
UML-based history of use cases in the 1990s as something to be avoided,
and supplanted them with user stories. User stories worked together with
other XP principles and practices such as on-site customer and test-driven
development to support rapid development of small systems. However,
user stories as self-contained minimalist units had problems scaling to
systems thinking. In complex systems, the relationships between stories
were as important as the stories themselves. Methodologists gradually
started adding features to user stories to accommodate some of these
concerns: for example, Mike Cohn recommends adding information for
the testers. At this writing these individual variations have caused the
definition of ‘‘user story’’ to diverge broadly and there is no single accepted
definition of the term.

C H A P T E R

8

Coding It Up: Basic Assembly

Your architecture is ready, and a new feature request has made it to the top
of your work queue or your Sprint backlog. Or maybe a user is banging on
your door or burning your ear on the phone begging for new functionality.
It’s time for the rubber to meet the road. If you’re a coder, this is the fun
stuff. Let’s sling some code.

But wait – as we sling code, we don’t want to bury our heads inside of
our screens and ascend to nerd heaven. It’s important to honor the original
goals of object orientation and be ever attentive to the end users’ world
models. That’s why we’ve taken you through the preceding chapters.
The Agile nerds will tell you that the code is the design. The Agile
businesspeople will tell you that the design should be outwardly focused.
We’ll show you that they both can be right.

Before we jump right into the code, we’ll spend a little bit of time
introducing MVC and a set of concepts that are broadly associated with
it. Most Agile architectures arise from an MVC framework, so we will
discuss MVC as a foundation for the details that ensue. We’ll then
describe two architectural approaches: one that supports short, snappy
event-driven computation, and the other that supports goal-oriented task
sequences that the user wants to complete. In this chapter, we will
discuss classical object-oriented architecture, where we distribute use
case responsibilities directly into domain classes. We’ll leave the incor-
poration of full use case requirements to Chapter 9. We end up the
chapter with guidelines for updating domain classes to support the new
functionality.

213

214 Chapter 8

8.1 The Big Picture: Model-View-Controller-User

MVC is a time-honored (since 1978) architecture framework that sepa-
rates information representation from user interaction. Calling it MVC-U
emphasizes the most important object in the framework: the user. It is
the user’s system interaction model that gives rise to the rest of the MVC
structure. We’ll use the terms interchangeably in this book, adding the U
particularly when we want to emphasize the user engagement.

We are right at home with MVC-U in separating what the system is
from what the system does. It’s not a coincidence. The early vision of
object-orientation was to capture the end user’s mental model in the code.
This dichotomy, of thinking and doing, is a widely embraced model of
the end user’s mental organization, and has found some kind of home in
almost every paradigm in Western history. Computing has not escaped
that dichotomy, and objects are no exception to the rule.

8.1.1 What is a Program?
Let’s talk video games for a second. If you’re playing an interplanetary war
video game, you feel that you really are in that fighter ship, piloting it – if
it’s a good game. The computer or gaming system disappears and you are
absorbed in total engagement. Brenda Laurel describes this experience of
engagement in her insightful book, Computers as Theatre (Laurel 1993).

The goal of a program is to create a reality that you can experience as
such. For most of you reading this book, these realities are often modeled
after your business world. When I use a program to logically retrieve an
item from a warehouse, I am not literally touching the crates. The program
may enact robots or may print out an instruction for a warehouse worker
to fetch an item, but the end result is as if I had done it myself. Therefore,
the program creates an illusion: I didn’t really move the item. At some
level, all of programming is about creating illusions. Good illusions are
contrived to fit the models that lie latent in the end user’s brain.

MVC-U helps the programmer create such illusions. The first step is to
bridge the gap between the end user’s mental model in his or her brain,
and the computer data in the program (Figure 8-1). That measure alone
works well for simple models, as one might find in a graphical shapes
editor. More often than not, things are more complex than that. My old
friend Dennis DeBruler used to say that complexity is proportional to the
number of distinct, meaningful ways you can look at a thing. MVC-U
allows multiple views of the same data – for example, a pie chart and a bar
graph view of simple data, or a floor plan view and front elevation view
of a house in a CAD program. We need a tool to coordinate the views, if

Coding It Up: Basic Assembly 215

View

User

Model

mental
model

computer
data

Figure 8-1 The view bridges the gap between brain and model.

Controller

View

User

Model

mental
model

computer
data

Figure 8-2 The Model-View-Controller paradigm.

multiple views are in play concurrently. The coordination itself is done by
a part of the tool called the Controller (Figure 8-2).

8.1.2 What is an Agile Program?
Interactive programs live close to human beings. We can in fact think of
them as an extension of human reasoning and mental processing, much
as Alan Kay envisioned the DynaBook (Kay 1972) as a lifelong companion
computer that extends human brainpower. Humans live and react in
human time scale and their mental activities face an ever-changing world.
If the software doesn’t keep up with that change, it leaves the human
mentally behind their world’s pace. As Agile is about responding to
change, it is instructive to consider how an Agile mindset can help the
world of interactive computing.

Contrast the interactive world with a batch-processing world. Human
users don’t interact with batch programs, at least not while the programs
run. Users may type the data that is fed to the program and they may read
the printout from the program, but only long (by machine time scales)
after the program execution has been extinguished. Such programs tend to
structure themselves around relatively stable business processes. In fact,
over time these programs tend to become constrained by other programs
and processes in the batch stream. This isn’t always true: for example, all
the popular search engine sites depend on long-running batches to keep

216 Chapter 8

the search data fresh, but those kinds of systems tend to be the exception
rather than the rule.

We can also contrast interactive code with embedded code. Embedded
code is often fast running and often must meet real-time deadlines, such as
one might expect from the firmware controlling the fuel injection in your
car. But that software is embedded in the hardware it controls and is often
quite distant from any direct user interface. It is usually constrained by the
industrial processes for the hardware in which it is embedded, so its rate
of change is usually low.

Most of the time, Agile code has an interactive user interface, and that
interface usually gives the user a feeling of engagement with a real world
where change is the name of the game. That includes the programming
styles discussed both here and in Chapter 9. Such an interface is often a
graphical interface but it can use any technology that helps the end user
engage with the software. What makes it Agile? This level of engagement
pushes change into the user’s face, in real time: Agile responds to change.
In the same sense that teams are asked to engage their customers in Agile
development, so an end user engages Agile software after the shrink-wrap
comes off. It’s about individuals and interactions – not only with other
people, but also with the software, and one doesn’t find as much of this
kind of interaction in batch or embedded systems.

If one looks at the foundation of object-orientation, it comes back to cap-
turing the end user’s mental model of the world in the code. If that world is
a dynamic world, then we’re likely talking Agile software – embracing
change along with collaboration between the end user (beyond-the-
customer) and the code. How do we manage interaction between the
end user and the software? The Model-View-Controller-User framework
has become a de facto standard for such systems. There exists a funda-
mental, deep and incestuous relationship between Agile, object orientation, and
Model-View-Controller-User.

Before we elaborate on MVC in the next section, it’s probably important
to answer the question: ‘‘How do I apply Agile development techniques
to my embedded platform code?’’ Similar questions arise for batch code.
While there is no universal answer, there is a strong tendency for the
techniques of Agile software development to serve interactive applications,
and to be less useful or relevant in batch and embedded applications. But
the exceptions are too numerous to ignore. The rule of thumb is to use
common sense. As Grandpa Harry said: If the shoe fits, wear it. If you
know your requirements, and know that they won’t change, then maybe
Agile is overkill for you and waterfall is just fine. There, we said it. It’s just
that it’s very rare that we find real projects with the luxury of being in that
position. If you are, be conscious of the gift that fate has given you and
take advantage of it!

Coding It Up: Basic Assembly 217

So much for Agile: how about Lean? While Lean development’s benefits
really shine in an environment where user needs evolve or vary widely,
they even add value to stable systems that have little direct user interaction.
It is always a good idea to reduce waste and inventory, and to continuously
and passionately strive towards process improvement. Many of this book’s
techniques therefore apply beyond so-called Agile projects. So, which of
the book’s practices are Lean and which are Agile? We’ll leave that to your
reasoning; the answer may not even be the same all the time. We hope that
the book provides enough background and context that you can use your
common sense to judge the answer.

O.K., now let’s move into the nerdy stuff.

8.1.3 MVC in More Detail
Model-View-Controller (without the U) has found expression in countless
articles and books as a framework with a familiar set of APIs. We won’t
repeat them here. Unfortunately, while many of these descriptions satisfy
MVC-U’s goal to separate the interface logic from the business logic, they
miss the other goals of direct manipulation, of supporting multiple business
domains, of supporting Conway’s Law, of supporting the DynaBook
metaphor or the Tools and Materials metaphor (Riehle and Züllighoven
1995). For a deeper understanding of MVC, you can read a bit about its
history from the perspective of its creator (Reenskaug 2003). For those who
want a reminder of MVC responsibilities, see Table 8-1.

Table 8-1 MVC APIs.

Model View Controller

■ Updates its data at the
request of commands from
the Controller

■ Notifies appropriate views
when its state changes

■ Can be asked to
register/de-register Views

■ Presents a particular
representation of the data
to the user

■ Can ask Model for the
current value of data it
presents to users

■ Can handle its own input
■ Together with the

Controller, handles
selection

■ Creates and manages
Views

■ Handles selection
across Views

■ Passes commands to
the Model

■ Handles commands
that apply to the
entire window

8.1.4 MVC-U: Not the End of the Story
While MVC does a good job of helping end users (and programmers, too,
of course) interpret the data in the program, and start to make sense out
of how an interesting algorithm might interact with those data, it doesn’t

218 Chapter 8

capture anything about the algorithms themselves, of what they do, or of
how they work. That may or may not be important. In ‘‘classical object-
oriented programming,’’ the algorithms are trivial relative to the structure
of the data, and we turn our attention to the data. But sometimes it matters.

A Short History of Computer Science

We can characterize many object-oriented systems as having relatively
simple external behaviors that operate on richer and more interesting
data structures inside the software. These simple or ‘‘atomic’’ exchanges
between people and software have dominated object orientation since
its earliest support of graphical user interfaces. To appreciate the broader
landscape of software architecture a bit more, we whimsically look back
in history.

Computers were a wonderful invention. They allowed people to describe
a repetitive task once, such as tabulating the tax on each of 10,000 payroll
records, so that untiring machine could apply that task to each of those
records. The job of the computer was to compute; data were the subject
of those computations. Early programs were collections of these mundane
algorithms linked together into increasingly complex computations.

The focus was on the structure of the computations, because that’s where
the business intelligence lay. All the algorithms for a given ‘‘job,’’ which
was usually a batch of computations thrown together, were loaded into
memory. Then, one by one, data records were fed to the program through
the card reader or were consumed from a disk file. The data throughput
was massive: a card reader could read 1000 cards a minute, and each
card bore 960 bits. Each data record had a short lifetime. However, the
organization of the data was uninteresting except for its layout on the
punch card or paper tape: one had to know which data appeared in which
columns, but little more than that. The representation of data inside the
computer program followed the organization of the procedures. The data
were passed from procedure to procedure as arguments. Copies of (or
references to) the data lived on the activation records of the procedures as
local variables. Users never interacted with the program; they interacted
with the IBM 026 cardpunch machines to prepare the data for the program,
and they interacted with the 132-column printout produced by the program.

Fast forward about thirty years through many interesting interme-
diate developments such as block worlds and SHRDLU (Shrdlu 2009)
and databases, and we come to the era of three interesting machines at
Xerox PARC: the Dove, the Dorado, and the Dolphin. Though graphical
screens had been around for a while, these machines took the interac-
tive interface to new limits. There was no card reader; you interacted
with the machine through the GUI and a strange device created by

Coding It Up: Basic Assembly 219

Doug Englebart called the mouse. Each mouse click caused the machine
to do something – instantaneously. Each function (or method) was small,
designed to respond in human time scales to human interactions. There
was no massive data input: the mouse and keyboard were typically 8-bit
devices that could operate roughly at human typing speed, about 1000
times slower than a card reader. Now, the data lived in the program
instead of living on the cards. The world had been turned inside out. These
new machines would be the birthplace of a new style of programming
called object-oriented programming.

Atzmon Hen-tov notes a parallel development on the programming side
that explains the rise of Agile approaches in a simpler way:

In the old days, computing was very expensive, so only critical stuff
was computerized. As a result, (since the cost of a mistake was
high), rigid disciplines ruled. Today, costs are low and everything is
computerized. Most systems today are not critical and have low price
for mistakes. The high overheads of the rigid disciplines don’t suit
such systems and hence agile evolved. (Hen-tov 2009)

We present this little history to illustrate a key principle that has dom-
inated object-oriented programming for years: the methods are small in
relation to the data, and the overall method structuring is relatively unim-
portant with respect to the overall data structuring. This balance between a
dominating data structure and a repressed method structure characterizes
many interactive programs. Consider the graphical shapes editor again.
We don’t think of the operations on shapes as being algorithms. Such
operations are usually encapsulated in a single shape and are tightly tied to
the shape-ness of the shape: recolor, move, and resize. The same is true for
the primitive operations of a text editor: inserting and deleting characters.

Atomic Event Architectures

Consider a shape-editing program (again). You might need a degree in
geometry to understand the polytetrahedra and the data structures used to
represent them, but the operations on them are simple: move this shape to
here, recolor that shape to be this color. Even the most advanced operations,
such as graphical rotation, are still atomic algorithms without much rich
structure (Table 8-2).

In good object-oriented programs of the 1980s, methods were very
small – in Smalltalk programs, they were commonly two or three lines
long. We were encouraged to think of a method on an object the same
way that we think of an arithmetic operator like + on an integer: simple,
atomic, and precise. In the parts of your program that have that nature

220 Chapter 8

Table 8-2 Two Agile architecture styles.

Concern Atomic Event Architecture DCI Architecture

User goal Direct manipulation of a domain
object to ask it to do something

A sequence of tasks toward a
goal in some context

Requirements
Formalism

According to need: state machine,
custom formalism: it depends

Use cases

Technology Good old-fashioned object-oriented
programming

Multi-paradigm design
(procedures and objects); DCI

Design focus Form of the data Form of the algorithm

Scope Single primary object or a small
number of statically connected objects

Multiple objects that
dynamically associate
according to the request

Interaction
Style

Noun-verb: select an object first to
define a context, and then select the
operation

Sometimes verb-noun: select
the use case scenario first,
then the objects

Example Text editor: delete character
Bank system: print account balance

Text editor: spell-check
Bank system: money transfer

the algorithms aren’t terribly important (at least to the system form, to
the architecture) and we shouldn’t fret about how they mirror the user
mental model. We discuss that style of architecture, a so-called atomic
event architecture, here in this chapter.

DCI Architectures

On the other hand, algorithms are, or should be, first-class citizens in most
programs. Consider a text editor, which you may right now think of as
a simple program with primitive operations such as inserting or deleting
a character. But how about spell checking? Or global search-and-replace?
These are algorithms. We could make them into methods, but the question is:
methods of what? I can spell-check a file, or a buffer, or perhaps just the cur-
rent selected text. This isn’t just a matter of adding a spell-check method to
some object: spell checking is an important concept in its own right. For such
cases – and they are many – we need MVC’s complement: the Data, Context
and Interaction (DCI) architecture (Table 8-2). We cover DCI in Chapter 9.

8.2 The Form and Architecture
of Atomic Event Systems

Atomic event systems have very little concern with the user model of how
he or she organizes sequences of work. In Chapter 7, we discussed use case

Coding It Up: Basic Assembly 221

as a way to capture what the system does when it is important to understand a
sequence of work towards a goal in a context. We’ll talk more about those kinds
of systems, called task-oriented systems, in Chapter 9. But what about the
rest – those ‘‘it depends’’ systems from Section 7.7?

In fact, most interactive systems today are dominated by atomic event
semantics. Every keystroke that you enter in a text editor, forms editor, or
web page is of that nature. Most mouse-click operations are of that nature.
What characterizes these interactions is that they are difficult to describe
in terms of any algorithm that is of significance to the user. Because it is
implemented on a Von Neumann machine, such functionality is of course
an algorithm in the end, and we can of course find its code in the program.
But we won’t find it in the end user’s head. What we instead find in the end
users’ head is a data model – a model of the data or form of their world,
where each piece of data is ‘‘smart’’ and knows how to do its domain
duty in a way that appears trivial and atomic to them. Perhaps computers
augment end user’s information processing power in a domain (if they even
do that), but it is more that they help the end user master and organize data.
Deleting a shape in a shape-drawing program is an example: it doesn’t take
many MIPs, but the program organizes everything in a way that affords
end users conveniences.

8.2.1 Domain Objects
O.K., let’s see what the architecture of an atomic event system looks like.
Let’s start with the end user mental model. What is the user thinking? The
user’s worldview is dominated by the data structure at this point. In our
shape editor, it’s the shapes. In a text editor, it’s the text. These are our
good friends the domain objects from Chapter 5, and they will always be
with us (the objects at the bottom of Figure 8-1). What else?

8.2.2 Object Roles, Interfaces, and the Model
Consider the shapes editor again. What domain object should support the
delete function? Maybe it is an operation on a shape that removes it from
the screen. But what if several shapes are highlighted, and the user presses
delete? Now it is an operation on a collection. Collections of objects live
in the domain model; groups of graphical objects are a common structure
in shape programs. We could replicate the operation and add a lot of
context-sensitive complexity – but, instead, we return to the user mental
model. To the user, the deleted ‘‘things’’ are both special cases of selections.
When one deletes something, what one deletes is the current selection.
Now, a selection isn’t a class in the Shape hierarchy; it’s a role. (More
precisely, we call it an object role to distinguish it from the concept of user

222 Chapter 8

role introduced in Chapter 7). A Shape can play the object role of selection.
So can a collection of shapes.

Assume that we’ve already captured the selection object role during our
analysis of what-the-system-does. These object roles appear as part of the
atomic system architecture as ordinary Java interfaces, C# interfaces, or
C++ abstract base classes (on the right of Figure 8-3). Each interface is
designed as a partial wrapper onto an existing domain object. In other
words, the class for the corresponding object should implement the corre-
sponding interface. The mapping of interfaces to domain classes is many
to many.

Controller

Objects

C
on

tr
ol

le
r

C
la

ss
es

m
n
p

t

To
Views

u

r

R
oles (Identifiers)n

p

q
r
s

t
u
v

Figure 8-3 Basic atomic event architecture.

Object roles are a crucial part of the end user mental model. When users
think about what they’re operating on or playing with, they think objects.
When they think about what those objects are going to do or how they are
going to do it, they usually think in terms of the roles those objects play.
This will become more important when we use the DCI architecture to
start supporting a user mental model that operates on several object roles
together, but it’s true even for simple operations. When I ask the ATM to
print the balance for the account currently on the screen, I momentarily
forget exactly what kind of account it is. I think of it in its object role as a
printable account, not as a savings account or checking account. That class
distinction is irrelevant to the action of printing.

Coding It Up: Basic Assembly 223

The Controller declares identifiers in terms of these interface types. It
will either instantiate the appropriate domain object in response to a user
command, or will otherwise bind its object role identifier to a suitable
domain object (one that implements that object role) when an atomic
command is invoked. The Controller then carries out its duties in terms of
the interfaces on the object roles, and the actual work gets done down in
the domain objects (Figure 8-3).

Within the MVC framework, these object roles become interfaces to the
Model objects. The object roles and interfaces capture the user notion of
what-the-system-does, and the domain objects (and classes) capture the
user’s mental model of what-the-system-is. We are simply interpreting
MVC as an architectural framework that stores and organizes the results
of our domain design and use case analysis.

Example

Let’s look at our simple financial system as an example. Our Account
Holder wants to print the balance on the account currently displayed on
the screen. How did it get there? Right now, we don’t care. The analysts
know that there are use case scenarios that bring us to this point, and that
we want to give the user the ability to print the balance on that account.

The term ‘‘account’’ here refers an instance of one of any number of
account types. When in a situation where it can be printed, it plays a spe-
cific object role that is characterized in part by its ability to print its balance.
What do we call that object role? We could very simply call it AccountWith-
PrintableBalance. The object role obviously supports the responsibility of
printing the balance but it could in theory support other responsibilities.
And an account in this state is likely to take on other object roles at the
same time, such as having the ability to disburse or receive funds.

The design is simple. The logic in the Controller will be written in terms
of identifiers that represent object roles; in most programming languages,
these will reduce to declarations in terms of interfaces (or abstract base
classes in C++). The APIs of those interfaces express the business functions
that map from the end user’s mental model of the task being accomplished.

At some time during the program execution those identifiers will become
bound or re-bound to objects. Those objects are instantiated from classes
whose member functions implement the method declarations in the inter-
faces. When implementing a new use case, it is up to the designer to create
and fill in such methods.

The Ruby code for the object role could be as simple as this:

class AccountWithPrintableBalance

def printBalance(outputDevice)

224 Chapter 8

end
end

Or, in C++:

class AccountWithPrintableBalance {
public:

virtual void printBalance(OutputDevice) = 0;
};

This type is used to declare one of the methodless object roles on the
right of Figure 8-4 and it is called a methodless object role type. The Controller
is likely to have a method that responds to a print command, and within
the scopes accessible to that method we’ll find the actual methodless object
role identifier declared. This identifier is the programmer’s ‘‘handle’’ to the
role. The logic in the Controller binds this identifier to the account object
of interest, and uses it to invoke the printBalance method.

We’ll get to the domain classes soon – Section 8.3.

Controller

Objects

C
on

tr
ol

le
r

C
la

ss
es

m
n
p

t

To
Views

u

r

R
oles (Identifiers)n

p

q
r
s

t
u
v

Figure 8-4 Linking up the domain objects with the Controller.

8.2.3 Reflection: Use Cases, Atomic Event Architectures,
and Algorithms
In general, analysis starts with user stories, becomes a bit more disciplined
in use cases, from which we can extract scenarios, and is carried into design

Coding It Up: Basic Assembly 225

as algorithms. There is an important shift between use case scenarios and
algorithms. Scenarios are about what; algorithms are about how. In general,
design isn’t so simple that we can simply write down use case scenarios in
the code. For example, we always write code sequentially, and if there are
two steps in an algorithm, we can say which will precede the other. Such
steps may correspond to end user activities and the end user may not care
about the order in which they are executed.

While developers view redundancy as a liability in code, analysts view
redundancy as an asset in requirements. Any single use case step alone
lacks the context of the other steps. This context is crucial during analysis.
Each use case therefore usually provides the full context of all of the steps
leading up to the realization of a user goal. Use of ‘‘includes’’ relationships
in use cases to pull out common steps that provide context from the steps
that remain in the use case de-contextualizes that step. However, in code,
it is different: we want one, single, closed copy of the code. We seek out
steps that recur across multiple use cases as we go through the transition
from use cases to algorithms, and capture them as use case habits. These
map naturally onto Context objects in DCI.

As a specific example, to deposit to your checking account the system
must know both the amount you are depositing and the account to
which it is being deposited. The requirements may, in general, not say
anything about which of these two is done first. The end user mental
model (for example, based on habit or expectations) may provide hints
for this. However, because the code implements concrete decisions, it
may impose an ordering constraint on the scenario that is not present
in the requirements. The algorithm may also implement nonfunctional
requirements that are stated separately as rules in the requirements. Use
cases have a place both for such essential system behaviors and for
such rules.

However, in atomic event systems, the individual behaviors are usually
simple enough that there is very little sequencing. We will return to this
issue in Section 9.5.1.

8.2.4 A Special Case: One-to-Many Mapping
of Object Roles to Objects
Sometimes an end user envisions an object role whose responsibilities
actually belong together as an object role, but which for technical, historical
or other reasons, map onto multiple objects. For example, an end user
may view an audio headset as a single device playing a single object role,
whereas the hardware actually has a driver object each for the microphone
and the earphone. In this case:

226 Chapter 8

1. Keep the AudioHeadset object role, implementing it as an interface
or abstract base class;

2. Create a new AudioHeadsetAggregate class. This class will
coordinate the Microphone and Earphone objects through a HAS-A
relationship

3. Create an instance of AudioHeadsetAggregate and bind it to an
identifier declared in terms of AudioHeadset

It’s a quick and dirty solution, but it works. The opposite case (which is
more obvious, perhaps: the user thinks of the microphone and earphone
as being separate object roles with separate muting and volume controls,
though those functions are controlled by methods on a single driver object)
can also be easily handled: both an Earphone and Microphone object role
can be bound to the same driver object.

8.3 Updating the Domain Logic: Method
Elaboration, Factoring, and Re-factoring

Now we have enough context to update the architecture!
For there to be domain objects, there must be domain classes (unless

you are programming in a classless language such as self). The actual
workhorses of an atomic event system, the domain classes, live behind
the abstract base classes produced in our what-the-system-is activities
of Chapter 5.

The central guiding Lean principle at work in the domain architecture
is poka-yoke: enabling constraints. As programmers rush to get a feature to
market they are likely to be less attentive to the gross system structure and
form than to the correctness of the business logic. The domain architecture
encodes soberly considered form that can guide development in the excite-
ment of new feature development. It is like I am building a house. The
architect and carpenters leave space for the stove and oven in the kitchen,
but the owners will choose and install the stove only later. When the
gasman or electrician arrives to install the stove, they don’t have to decide
where to put it: it fits in one place. They can install it without disrupting
the structural integrity of the carpenter’s work, or the aesthetics or kitchen
workflow vision of the architect. Those parts of the domain architecture
that the project imports from the market or from other projects reflect
another Lean principle: leveraging standards – the real-world analogies to
the stove being standard stove widths and standard fittings for electrical
and gas connections.

Do I sometimes need to trim or cut the cabinets a bit, or add gas or
electrical adaptors when installing a stove? Of course. Architecture isn’t

Coding It Up: Basic Assembly 227

meant to be cast in stone, but to be an overall guiding light that makes it
difficult to create errors of form. Software architecture sometimes needs
minor adaptation to accommodate unforeseen needs of a use case scenario.
The larger such accommodations are, the more the need for an ‘‘all hands
on deck’’ session to assess the extent of the adjustment on all parts of
the system.

8.3.1 Creating New Classes and Filling in Existing
Function Placeholders
We fill in class member functions or create domain classes as needed, as
new use case scenarios call on us to implement their logic. These classes
follow many of the common practices you know from good object-oriented
design. The designer can organize these classes into class hierarchies to
express knowledge about the organization of domain entities or simply to
gain the common benefits of inheritance, such as code reuse.

One can argue whether the derived classes – or for that matter, whether
any of the classes – should formally be thought of as part of the architecture.
After all, architecture is about form, and classes are about structure.
However, this is a rather unhelpful argument to have or to resolve, and it’s
one of those wonderful decisions about which you can let the manager flip
a coin. Of course, in the end everything matters; what you call things is a
matter of what elicits the best communication in your culture. We can’t tell
you that.

In the atomic event architecture, user actions are simple and usually
correspond to short, simple (hence the word ‘‘atomic’’) operations. Such
operations correspond closely to ordinary object methods. One of the
easiest, Agile ways to add atomic event functionality is to embed the
user-focused feature code in the domain objects (Figure 8-5). This is a
particularly relevant technique for small-team projects, such as one might
find working on a real-time device controller.

Filling in the domain member functions is straightforward, guided by
domain experts’ insight and programmers’ familiarity with the business.
Requirements from the use cases can guide the implementer, but the
implementer should not focus too closely on any single use case, keeping
the broad domain needs in mind. On the other hand, later re-factoring
(re-arranging the code without changing functionality) can evolve today’s
version of the method (written for this use case) into a more general
method. Because domain design drove the structure of the class API, such
re-factoring doesn’t erode the architectural integrity of the interface.

228 Chapter 8

Added from use case →

Domain Analysis

class SavingsAccount <

 AccountWithPrintableBalance

 def initialize(balance) end

 def availableBalance end

 def decreaseBalance(amount) end

 def increaseBalance(amount) end

 def printBalance(output_device)

 end

end

↓

Figure 8-5 Atomic member functions.

Example

Continuing our example from Section 8.2.2, let’s look at what the class
declaration would look like. Consider an account SavingsAccount that we
want to code so it can play the object role of AccountWithPrintableBalance.
The code could look as simple as this:

class SavingsAccount < AccountWithPrintableBalance
def printBalance(output_device)

. . . . # do the actual printing
end
. . . .

end

Or, in C++:

class SavingsAccount:
public AccountWithPrintableBalance

{
public:

void printBalance(OutputDevice);

Coding It Up: Basic Assembly 229

. . . .
};

. . . .

void SavingsAccount::printBalance(OutputDevice printer)
{

// do the actual printing on the printing device
. . . .

}

Up until this time, SavingsAccount::printBalance may have been
just a stub that fired an assertion or threw an exception – an architectural
placeholder that anticipated the arrival of this use case scenario. But now
the time has come to code it up – just in time, in line with Lean principles.
We will do the same for all other account types that must support the
AccountWithPrintableBalance object role.

8.3.2 Back to the Future: This is Just Good
Old-Fashioned OO
Such an architectural style evolves to organize ‘‘smart’’ objects: objects that
can do more than lie around like dumb data. They can serve user requests.
Take care to honor good cohesion within objects and de-coupling between
objects; the ‘‘smart-ness’’ of an object shouldn’t be an excuse to give it
dominion over a host of other objects that it controls or coordinates.

We will later contrast this approach with the DCI approach, which teases
all the what-the-system-does functionality out of the dumb domain objects,
leaving them dumb. That localizes the more rapidly changing functional
logic elsewhere, where its maintenance doesn’t become entangled with the
domain code. In fact, the atomic event architecture has a liability in that it
fattens the interfaces of the domain classes and makes them less ‘‘domain-
y’’ – they become hybrid homes for what-the-system-does-and-is alike.

8.3.3 Analysis and Design Tools
Agile is skeptical of tools (‘‘individuals and interactions over processes and
tools’’), but a tool can be a good thing if it diminishes the tyranny of a process
and encourages interactions between individuals. CRC cards (Beck 1991)
are one such tool. CRC stands for Candidate Object, Responsibilities and
Collaborators, and a CRC card is a simple office note card or recipe card with
these three fields. We talked a bit about using them to test the architecture
in Section 6.1.6 but they are more commonly used as a design tool.

230 Chapter 8

Figure 8-6 shows an example CRC card. A group sits together to read
through use case scenarios in turn to create CRC cards whose responsibil-
ities reflect the work to be done. During these scenarios it is usually best
to think of the cards as objects (or sometimes as object roles, as described
below), rather than as classes. You should strive to gather closely related
responsibilities together in each object interface. That will raise the chances
that the code for the object – usually coded as a programming language
class – will be cohesive.

Figure 8-6 A CRC card.

People commonly think of CRC cards as a way of allocating responsibil-
ities to objects: dividing up the work of reaching the goal of a scenario, so
that all the necessary responsibilities are accounted for in all the scenarios.
Once the object responsibilities have been identified, it is straightforward to
code up the classes. In an atomic event architecture each card has a mixture
of domain responsibilities and responsibilities that tie directly to a use case.

CRC cards can be used to envision and evolve other artifacts than system
objects. A small stockpile of CRC cards can represent the domain classes of
a system. Domain class responsibilities come from domain experts rather
than from scenarios. Again, in an atomic event architecture, this difference
between object and class is largely unimportant.

In Chapter 9 we will cover the DCI architecture. At run time, objects
support both the responsibilities that support the use cases and the respon-
sibilities of the deeper domain logic. However, we want the design
expressed in source code that separates these two kinds of responsibil-
ities. First we create CRC cards for the domain classes, based on domain
expertise as above. We can use CRC cards a second time to distribute use
case responsibilities across object roles. An object role becomes a use case
interface to an object, leaving the general domain operations in the classes.
The DCI architecture combines object roles and classes in run-time objects

Coding It Up: Basic Assembly 231

that have all the necessary functionality to actually run, while decoupling
the what-the-system-does code from the what-the-system-is code.

A team using CRC cards can be attentive to the specific coupling and
cohesion goals of the project as we discussed in Sections 5.2 and 5.3. For
example, it may be a goal to keep together all the code that reflects the skill
set of a particular geographic location. CRC cards have no built-in coupling
and cohesion metric. Use common sense, taste, experience, and insight.

8.3.4 Factoring
Factoring is a simple technique that helps grow the architecture over time.
You may notice after a while that methodful object role after methodful
object role contains the same logic, and that the logic is independent of the
type of the class into which it is injected. That logic can be factored into a
base class.

8.3.5 A Caution about Re-Factoring
Re-factoring is a time-honored and effective technique to keep code clean
locally. Try to develop a habit of leaving the code cleaner than when you
found it; you’ll thank yourself later. Robert Martin’s book Clean Code relates
good tips not only about re-factoring, but also about coding conventions
that reflect key lean principles (Martin 2009).

Re-factoring is relatively ineffective at fixing architectural problems
that span architectural units. Re-factoring should leave code functionality
provably invariant, or at least arguably invariant, while improving its
structure or expressiveness. It’s easy to make such arguments within
class scope, particularly if you have a good re-factoring browser that
avoids accidentally causing an identifier reference to become bound to a
declaration in a different scope than intended. But it is almost impossible
to reason about functional invariance when you start moving definitions
and declarations across class boundaries.

Will you have to bite the bullet and make such adjustments to your
code? They’re hard to avoid completely. But a good up-front architecture
can reduce them. To argue that you should start with a casually or
briefly considered design and then let re-factoring bring you to good code
structure recalls an old adage from Grandpa Harry: Hope is not a plan.

8.4 Documentation?

We already have user requirements captured in use cases (Chapter 7),
and now have their realization as algorithms captured in the code itself.

232 Chapter 8

Additional documentation is unlikely to add more value – but, as they say
in Scrum: inspect and adapt.

It’s important to keep use cases and code up to date with each other if
you keep use cases around (presumably, you do keep the code around).
Nothing is worse than misleading documentation. Consider investing
in literate programming and tools like doxygen and Javadoc, though
real-world success with them has been mixed.

Some organizations (especially small teams) keep their CRC cards handy,
and turn to them if they need to evaluate emergent scenarios. Alternatively,
CRC cards can be created again from scratch on an as-needed basis.

8.5 Why All These Artifacts?

If you’re a good old-fashioned object-oriented programmer who has
learned to live lean with just objects and classes, all these additional
artifacts may look superfluous (and it’s going to get even just a little bit
worse in Chapter 9). Why do we introduce object roles?

One reason is that object roles usually figure important in the end user’s
mental model, as described in even some of the trivial examples in this
section. Another reason is that as we start to handle more exotic end-user
operations when we discuss task-oriented styles, the object roles become
an important locus of form that is crucial from a user’s perspective: an
encapsulation of what the system does in a particular use case. For the sake
of uniformity, most of the time we use object roles and interfaces even for
the simple case.

Another reason for object roles is that we want to explicitly express
the form (which is what architecture is all about) separately from the
implementation. It can become difficult or impossible to reason about the
fundamental form of the system if the code obscures or obfuscates it.
Being able to tease out abstract base classes and object roles separate from
their derived classes allows us to reason about form. This is important for
anyone trying to understand the big picture in a large system – and that
implies most of us. Seeing the whole is a key Lean principle.

Software interfaces are a time-honored architectural practice to help
decouple parts of the system from each other as well. Such decoupling is a
central admonition of the ‘‘Gang of Four’’ (GOF) book (Gamma et al 2005,
p. 18) but it has appeared earlier in dozens of texts.

Because we often want to separate the behavioral code from the basic
platform code, it is sometimes a good idea to use the DCI architecture
even when dealing with requirements that look like atomic events. It’s
your choice. We talk about DCI in the next chapter. Right after the
history lesson.

Coding It Up: Basic Assembly 233

8.6 History and Such

Object-orientation of course has been around since Simula 67 in 1967.
Ole-Johan Dahl and Kristin Nygaard received funding to create an Algol
compiler in the early 1960s, and they created the language as an extension of
that project. The language was first introduced at a conference in Hamburg
in September, 1965 (Dahl and Nygaard 1966).

Trygve Reenskaug invented the Model-View-Controller architecture at
Xerox PARC in 1978. Its goal was ‘‘to support the user’s mental model of
the relevant information space and to enable the user to inspect and edit
this information’’ (Reenskaug 2003).

Later Reenskaug would act on his feeling that object-oriented program-
ming languages had lost too much of the notion of object and had started
focusing too much on classes. Object-oriented design was missing the
concept of object role. Reenskaug would publish his OORAM book that
featured object roles as first-class entities of the object model in 1995
(Reenskaug, Wold, and Lehne 1995).

CRC cards came out of the work by Ward Cunningham and Kent Beck
(Ward was at Tektronix, and Kent was at Apple) as a way to teach object-
oriented thinking. Rebecca Wirfs-Brock, who also worked at Tektronix,
popularized CRC cards through her book on responsibility-driven design.
However, the first C in CRC never really stood for class. The concept had
been used in Tektronix for other concepts including abstract classes and
subsystems. When Rebecca started working on her second book (Wirfs-
Brock and McKean 2003), she really wanted to rename the cards to RRC
(carefully note the title of the book that would result), but the stickiness of
the name CRC led them to leave it alone – even as she got comments from
reviewers.

So ‘‘CRC cards’’ had become a legacy name, in spite of the fact that
they could be used for roles (or interfaces, classes, and other abstractions).
Rebecca allowed the acronym to persist – but only because she made the C
stand for Candidate (a concept that would become permanent only when it
became proven in the design) instead of for class. So today ‘‘CRC’’ stands
for Candidate Objects, Responsibilities, and Collaborations.

Trygve Reenskaug recalls a conversation with Rebecca Wirfs-Brock at
the WOOD conference in Norway in May of 1998. They were discussing
responsibility-based design. Trygve suggested that it’s not classes that have
responsibilities: it’s their roles, and he reports that Rebecca concurred.

C H A P T E R

9
Coding it Up: The DCI

Architecture

Chapter 8 described an architecture for the relatively simple case where
activities in the functional requirements correspond closely to member
functions on domain classes. In this chapter we describe how the architec-
ture can encapsulate and express functional requirements that come from
true use cases: more elaborate sequences of tasks carried out to accomplish
some goal in a context.

9.1 Sometimes, Smart Objects Just Aren’t Enough

At the beginning of Chapter 8 we described the kinds of programming
structures well-suited to a Model-View-Controller architecture, such as the
common primitive operations of a graphical shapes editor. In operations
such as moving or re-coloring a shape, the algorithmic structure is trivial
relative to the program data structure. The Controller can catch the menu
selection or mouse button push that indicates a certain command given the
context where the gesture occurred, and it can directly dispatch a request
to the right model (domain) object to handle that request. Clever designers
that we are, we will have enhanced the API of the domain object so that it
supports such requests in addition to the ‘‘dumb data’’ operations we take
for granted in domain objects.

But computers help us do more than just store data; sometimes, they can
tackle complex tasks that actually make the computer seem pretty smart.
In most of these cases the end user is thinking of some goal they want to
attain through a short sequence of tasks. (It’s still a short sequence: if the
sequence starts verging into coffee-break-duration territory, we don’t have

235

236 Chapter 9

an Agile interactive program on our hands any more, but a batch program
in disguise.) The sequence of tasks achieves some goal in a context. Now, we
are firmly in use case land: it is exactly these kinds of tasks that use cases
capture. In this space, we are operating at human scales of time and scope.

Both MVC and DCI are about people and their interactions with
machines, and that puts us squarely in Agile space. While MVC ‘‘sep-
arates the parts of a program that are responsible for representing the
information in the system and the parts that are responsible for interac-
tion with the user,’’ DCI ‘‘minimize[s] any gap that might exist between
the programmer’s mental model of her program and the program that is
actually stored and executed in the computer. In particular, it concretizes
how the system realizes system operations as networks of communicating
objects’’ (Reenskaug 2008).

9.2 DCI in a Nutshell

Trygve Reenskaug’s DCI system offers an exciting alternative to good old-
fashioned object-oriented programming so we can encapsulate the what-
the-system-does code on a per-scenario basis. Ordinary object-oriented
programming lumps what-the-system-is and what-the-system-does inter-
faces together. However, these two interfaces change at different rates and
are often managed by different groups of people. We want the domain logic
(what the system is) to be cohesive; we want the code of each feature to be
cohesive; we want good de-coupling between the domain logic and feature
logic; and we want to capitalize on Conway’s Law. The DCI architecture
addresses each of these needs.

To grossly simplify DCI, it separates the architecture into a data part (the
domain part, or what the system is, as in Chapter 5) and an interaction,
or feature part (what the system does) (Figure 9-1). The interaction part

Interaction part

Context

Data part

Objects

Roles Use case

Context

abc def ghk

Figure 9-1 DCI in a Nutshell.

Coding it Up: The DCI Architecture 237

becomes connected to the data part on an event-by-event basis by an object
called the Context. The architecture can be viewed as Data and Interaction
code dynamically connected together by a Context: hence the name Data,
Context, and Interaction, or DCI.

The data part comprises the basic, rather dumb domain entities that
come from the end user mental model. Data object interfaces are simple
and minimal: just enough to capture the domain properties, but without
operations that are unique to any particular scenario.

The interaction part expresses a use case, replete with its sunny day
scenario and all of its deviations (shown in Figure 9-1 as the multiple
potential paths of execution through the roles). We can conceptualize a use
case as a single graph of partially ordered steps. However, most use cases
express scenarios in terms of interactions between the user roles and the
object roles involved. So we take the monolithic partial ordering of steps
and divide it at object role boundaries. The code captures the use case in
terms of object roles instead of being a monolithic procedural structure.

We try a poor metaphor here to illustrate. Think of a central hub for
trains. The trains go out from the hub in the morning and eventually come
home to roost at night. Each one visits many train stations along the way.
Each train station can play the role of a stop for that train; its responsibilities
are to discharge passengers and take on new ones, as well as perhaps to
take on food, fuel, or a new driver. That train’s route is a use case scenario.
We could present it as one long track, but the station boundaries are
interesting demarcations of the train’s journey. The collections of all the
train routes (deviations) together are analogous to a use case: a collection
of potential scenarios between a user (or actor, which here is a train) and
the system (the collection of stations). The DCI analogy extends further
here because each station is an object that can play many object roles, each
object role corresponding to a train stopping at the station.

Object roles are collections of related responsibilities that accomplish
their work through each other’s responsibilities. We can talk about how
waiter and chef roles complete the tasks of a restaurant through their
responsibilities without talking in detail about individual waiters or chefs.
Some of these responsibilities are just humble services of the domain object
that plays the object role during a specific use case enactment. For example,
that a chef turns on the gas on the stove or looks up a recipe is unimportant
to everyone except the chef: that is likely part of the chef’s domain makeup,
rather than a use case responsibility.

When a system event occurs, code in the environment (often in the MVC
Controller object) finds a Context object that understands the object-role-
to-object mapping for the use case that corresponds to the event. (We’ll
discuss later how it finds that Context object.) That allows each domain
object to play an object role. The Controller passes control to the Context

238 Chapter 9

object, which ‘‘wires up’’ the object roles to the objects, and then kicks off
the execution by invoking the object role method that initiates the use case;
this is called the trigger. In general each object may play several object roles,
and a given object role may be played by a combination of several objects
together.

9.3 Overview of DCI

The goal of DCI is to separate the code that represents the system state
from the code that represents system behavior. This separation is related
to but different from MVC’s split between data representation and user
interaction (Figure 9-2).

Technique
Bits & Bytes
Programmers

Local

MVC

Data
Representation

System State

Data Structures State Direct
Manipulation

Enactment

Dynamic Dynamic

Domain
Information

Business
Global

AnalystsInteraction
Designers

Dynamic
Domain ExpertsStatic

Data Designers &
Architects

System
Behavior

User
Interaction

DCI

Figure 9-2 Relationship between MVC and DCI.

MVC and DCI are designed to work together as a way for the program-
mer to reason about the end user’s mental models and to capture those
models in the code.

Coding it Up: The DCI Architecture 239

9.3.1 Parts of the User Mental Model We’ve Forgotten
Think of it this way: every piece of software has several structures inspired
by real-world, business, and customer concerns and perspectives. Each
domain model we built in Chapter 5 is an example of such a model, one
that captures the underlying essence of the business structure. The object
roles we developed in Section 7.5.5 reflect the end user model of how the
program works. Both of these are rather static structures.

In the days of procedural programming, procedures were a natural
mechanism to describe program enactment – what the program does.
Object-orientation has all but outlawed them. This unnecessary taboo
has quashed the expressiveness of object-oriented designers for thirty
years. Curiously, the techniques that have recently evolved around object
orientation have slowly brought us back to where we can again capture
algorithms in an object-oriented framework.

You’ll remember our simple picture from earlier in the book (Figure 2-1
on page 28) that splits the design world into what the system is and what
the system does. Figure 9-3 is a re-take of that picture. In the what-the-
system-is part we have our familiar friends, the classes and the objects
(and especially the objects), from Chapter 5. On the other side of the line,

Methodful Roles

Does
Is

M
ethodless R

oles (Identifiers)

abc def ghk

Objects

C
la

ss
es

m
n
p

g
h
k

d
e
f

a
b
c

q
r
s

t
u
v

w
x
y

Figure 9-3 Basic DCI architecture.

240 Chapter 9

we find artifacts called methodless object roles and methodful object roles. The
methodless object roles are also old friends: they come from the object roles
we created in Section 7.5.5 to capture the end user’s cognitive model of
the action. Those object roles came directly from the use case (specifically,
from a habit).

We represent these roles as identifiers in the programming language, and
we refer to the role in the code by referring to its identifier. The identifiers
may just be pointers that address the object to which the role is bound,
or they may be macros that evaluate to an object pointer, or they may be
function invocations, or something else. The goal is to give the programmer
the impression that these interactions take place via methods on roles.

These identifiers can be typed, and we refer to their types as methodless
object role types. These types present the interface to the role: its collected
responsibilities. In Java and C#, these types are expressed as interfaces; in
C++, we cheat a bit and use abstract base classes. Together these object roles
and types are part of the functional architecture of the system. They document
and codify the contracts between system parts by which they interact to do
the end user’s bidding. They are form, not structure: the form of enactment.

abc def ghk

Methodful Roles

Objects

m
n
p

g
h
k

d
e
f

a
b
c

q
r
s

t
u
v

w
x
y

C
la

ss
es

M
ethodless R

oles (Identifiers)

Figure 9-4 Association of identifiers with algorithms.

9.3.2 Enter Methodful Object Roles
The methodful object roles are new animals here. From the outside, they
look much like the methodless object roles, that is, like Java or C# interfaces

Coding it Up: The DCI Architecture 241

or abstract base classes. But unlike methodless object roles, their methods
are filled in with code. These object roles carry the real knowledge of what
the system does. The use cases and habits live in these methodful object
roles. Whereas methodless object roles are form, methodful object roles are
structure.

The system behavior lies distributed throughout the domain objects
in classic object orientation. The behavior becomes arbitrarily fragmented
according to the domain partitioning. Because these are two, sometimes
orthogonal views, and because domain partitioning is usually the dominant
structure in object orientation, we lose the ability to reason cleanly about
use case scenarios. The methods may still be atomic and polymorphic and
a lot of other things that sound good, but which make any given use case
scenario devilishly hard to understand. By contrast, methodful object roles
bring the fragments of the algorithm together in one place that corresponds
to one concept of the end user world model. (We call this model the volitive
world model: the end user’s model of the form of the action rather than the
form of the domain or of the data.)

We still need artifacts that represent the form of the functional architec-
ture apart from its structure, and that capture the interface of the object
roles apart from the implementations of their algorithms. Those are the
methodless role types, and they often act as the base type for the methodful
roles. We desire these methodless object role types because these interfaces
change less often than the methods themselves. We want to capture the
two different rates of change in two different artifacts. Agile is about man-
aging change, and the interfaces have a different rate of change than the
methods. We might have architects oversee the interfaces, and application
programmers take care of the methods. In the ideal case, user interaction
code (often in the Controller) will usually talk to a methodful object role
through an identifier declared as a methodless object role, typed as an
interface (Figure 7-1). The real benefit comes in programming languages
with compile-time typing because they enforce compliance between the
methodless role type interface and the methodful role.

Because methodful object roles have implemented methods and member
functions, they can’t be Java or C# interfaces. We’re not in Kansas any
more. Our programming languages are missing a feature to express these
concepts. We’ll get to that in a second.

These object roles capture what the objects do. Well, what objects?
Ultimately, it’s the domain objects. We create domain objects that lack
methods to specifically support the what-the-system-does architecture,
because domain objects are there to capture the domain (what-the-system-
is) structure only. We need to somehow combine the domain objects’ code
with the code that runs the scenarios. To do that, we will inject the scenario
code into the classes from which those objects were created.

242 Chapter 9

Where does that code come from? We can count on there being a
single, closed, maintainable copy of that code in the methodful object role.
We can inject that code into each class whose objects must take on the
corresponding object role at some point during their lifetime (Figure 9-5).

Methodful Roles
M

ethodless R
oles (Identifiers)

C
la

ss
es

abc

abc

def ghk

a
b
c

d
e
f

def

def

g
h
k

ghk
g h k

m
n
p

q

r

s

t
u
v

w
x
y

Figure 9-5 Using traits to inject algorithms into domain classes.

9.3.3 Tricks with Traits
How do we do that? We can use a programming approach called traits
(Schärli et al 2003). A trait is a holder of stateless methods. If you don’t know
traits, you can think of them as a little like mix-ins. Traits use language tricks
(different tricks in different languages and environments) to effectively
compose classes together. We treat one class as though it is an object role,
while the other class is a domain class, and we inject the logic of the former
into the latter. We can make a methodful object role a trait of a class to inject
its functionality into that class. This leaves methodful object roles generic,
decoupled from the class into which they are injected. The word ‘‘generic’’
rings true here in several implementations of traits, as we’ll often turn to

Coding it Up: The DCI Architecture 243

a programming language feature of the same name to implement them.
Methods of the object role can invoke methods of the domain class into
which they are injected. We’ll show you details in the next section.

Now we can finally get back to objects. The objects come and go in the sys-
tem as initialization and business scenarios create and destroy them. Each
object can take on all the object roles for all the scenarios we have designed
it to support. Of course, multiple objects will often (in fact, usually) work
together to support any single given scenario. When there is work to be
done, where do we go to get it done? How does that object know of the
other objects with which it is supposed to collaborate during an enactment?

9.3.4 Context Classes: One Per Use Case
We define a Context class for each use case and for each habit (page XXX). A
Context knows the object roles that are involved in any given use case, and
its implementation holds the methodless object role identifiers declared
in terms of their methodless object role types (interfaces or abstract base
classes: Figure 9-6). For any given invocation of a use case scenario, those

Methodful Roles

M
ethodless R

oles (Identifiers)
C

la
ss

es

abc

abc

def

def

khg

ghk

ghkdef

m
n
p

g
h
k

d
e
f

a
b
c

q
r
s

t
u
v

w
x
y

Figure 9-6 DCI object instantiation and identifier bindings.

244 Chapter 9

object roles must be bound to objects. Those bindings can be externally
retrieved through public methods of the respective Context object.

There is one Context object per use case, not per use case scenario. The
Context is able to set up the object role-to-instance mappings under all the
possible starting conditions for a given use case, and then start off the use
case. Even though the Context may always start the use case with the same
method on the same role, the use case may follow millions of different
paths depending on the argument values and states of the domain objects.
The code in the methodful roles should capture the logic not only for the
sunny day scenario but also for the deviations. Each use case may have
dozens of such deviations.

To start up a use case we instantiate its Context object. The Context
object can use any means available to bind its object role identifiers to any
objects that exist in the system. Of course, it uses contextual knowledge to
ensure that a given object role is bound only to an object that supports that
object role’s interface. Programming languages with static type checking
can help enforce this assumption and can produce compile-time errors if
the designer tries to create the wrong associations.

And then the Context object just invokes the first method of the first
object role. An object plays that role, and the method starts executing for
the object into which the role is injected. If that object needs to communicate
with another, it does so in terms of its role identity rather than its object
identity because we describe the use case in terms of roles rather than
objects. Where is its role identity? A methodless object role identifier serves
as the name of the role. Any role can interact with any other by invoking a
suitable method on that role’s methodless object role identifier.

The DCI architecture wires up that role to the object for which its
methods are invoked on a use case-by-use case basis. Invoking a role
method causes code to be executed that retrieves the identity of the object
currently playing that role from the Context object. The designer provides
the code that maps roles to instances on a per-use-case basis.

This may sound a bit contrived, but let’s look at some of the design
tradeoffs here:

1. Polymorphism: At the level of programming-in-the-large, it’s gone.
Actually, we have moved it to the Context object, which dynamically
and explicitly chooses a group of objects to take a given set of
behaviors (method invocations) instead of deferring the method
choice to the last microsecond of invocation. So we remove much of
the uncertainty of the where-will-this-polymorphic-dispatch-end-up
problem. There is still a degree of uncertainty because of the
dynamic binding of Context object role identifiers. However, the
binding is under explicit control of the business logic in Context, so
we can reason about the dispatching in business terms. Besides, the
scenario logic is all in the methodful object roles – for any given

Coding it Up: The DCI Architecture 245

object role and method, there is just one implementation. The
polymorphism plays out only in the methodful object roles’
invocation of methods on self, methods that are deferred to the
domain object. Trygve Reenskaug, the inventor of the DCI approach,
says: ‘‘We solve the problem by suspending polymorphism for the
methods that are essential for the integrity of the solution.’’ Of
course, you can still use good old-fashioned polymorphism in the
domain classes – a powerful way to organize the software families
that come out of domain-driven design.

2. There is a nice degree of compression going on here. All objects that
play a given object role process the same interaction messages with
the same methods. That’s Lean.

3. Code readability: Algorithms now read like algorithms. You can look
at the code of a methodful object role and reason about it, analyze it,
maybe even stub it off and unit test it.

4. The rapidly evolving what-the-system-does code can evolve
independently of the (hopefully more stable) what-the-system-is
code. The domain structure no longer defines nor constrains the
run-time structure. Early in system development you’ll be filling in
methods of both kinds of classes together, but the domain-driven
design will help the domain class methods become stable over time.

5. We now have a place to reason about system state and behavior, not
just object state and behavior.

6. Though not simplistic, DCI is simple. It is as simple as it can be, if
our goal is to capture the end user’s mental models in the code – end
user engagement is crucial to success in Agile. That’s usually a good
thing, because it helps contain evolution well and helps us
understand and communicate requirements better. In addition, it
was the whole goal of object-orientation in the first place. Consider
these four concepts: having a usability focus in design, object
orientation, Agile software development, and the DCI
paradigm – they are all just different ways to express the same deep
fundamentals.

7. We make the code more failure-proof by keeping the domain
interfaces minimal and separate from the feature logic. They are no
longer polluted with the role operations as in the atomic event
architecture. The domain classes provide simpler, clearer design
constraints than in ordinary object-oriented programming.

What we have done here is to tease out a different kind of commonality
than we talked about in Chapter 5. The object roles and Context objects
define a recurring commonality of behavior or algorithm that is independent
of the objects that carry out those algorithms, and also of the classes of

246 Chapter 9

the objects that carry out the algorithm. Those commonalities relate closely
to the end-user mental model (volitive model) of system behavior. What
varies is the set of objects into which those behaviors’ roles are injected,
enactment by enactment.

Context objects can themselves play object roles that come from the end
user mental model! Consider the public interface of a Context object: it
provides the API by which we enact individual use cases. Let’s say that
we group related use case scenarios (‘‘related’’ in the sense that they work
with the same object role combinations and that they use similar strategies
to map object roles to objects) together in one Context object. That object
now represents a collection of related responsibilities. That’s an object in
the end user mental model, or more precisely, the object role played by
some object. We’ll explore this concept further in Section 9.6.

In the following sections, we illustrate how to use DCI with the simple
banking funds transfer example from Section 7.5.3.

9.4 DCI by Example

We kick off a DCI design when the business decides that the software needs
to offer a new service that can be expressed in terms of scenarios. DCI is
optimized for designs where the form of the scenario is as important as the
form of the underlying data model. We think of a banking transfer (pri-
marily) as an algorithm that operates on two or more financial instruments
(which are the secondary focus – we are concerned about their details only
with respect to their object roles in the transfer).

9.4.1 The Inputs to the Design
DCI starts with two major inputs that together capture the end user
mental model of their world. The first input is the domain model, which
we reduced to code in Section 6.1. In addition to the code, we have the
domain documentation that was also developed in Chapter 5, and may also
have some domain-level patterns that describe high-level system form. For
example, a banking system may include financial instruments, transactions,
audit trails, and other actuarial artifacts that capture the current state of
holdings and investments.

The second input is the role model, which we developed in Section 7.5.5.
The role model conveys the user’s understanding of system dynamics. For
example, a funds transfer in a bank would involve financial instruments as
object roles called source account and destination account.

In addition to these two inputs, we also need the use case scenario
that we are implementing. The use case will become an algorithm that

Coding it Up: The DCI Architecture 247

Use case name: Transfer Money
User intent: To transfer money between his or her own accounts.
Motivation: The AccountHolder has an upcoming payment that must be made from an account
that has insufficient funds
Preconditions: The AccountHolder has identified himself or herself to the system
Happy day scenario:

Step Actor Intention System Responsibility

1. AccountHolder enters a source
account and requests an account
transfer

System displays the source
account, provides a list of valid
destination accounts, and a field to
enter the amount

2. AccountHolder selects a destination
account, enters the amount, and
accepts

System displays transfer
information and requests a
password

3. AccountHolder enters the password
and accepts the transfer

System moves money and does
accounting

Variations:
1a. AccountHolder has only one account: tell the AccountHolder that this cannot be done
2a. The accounts do not exist or are invalid…
Post-conditions:

 The money is moved
The accounts balance
The log reflects the exact intent of the transaction (a transfer is a transfer, not a withdrawal
and a deposit)

Figure 9-7 Transfer money use case (evolved from Figure 7-5).

we reduce to code for the new business service. We use the use case of
Figure 9-7.

9.4.2 Use Cases to Algorithms
In Section 7.5.5 we discussed the design path that takes us from user
stories to use cases to algorithms. Use cases are overkill for atomic event
architectures, but they capture important scenarios and variations for more
complex requirements. It’s important to realize that a use case is not an
algorithm, and that the algorithm in the code may reflect sequencing
decisions, implementation of business rules, and other details that aren’t
explicit in any single use case scenario.

Let’s start with the use case for transferring money between two accounts
in Chapter 7, which we introduced in Section 7.5.1. This is a classic use
case that captures the users’ (Account Holders’) intent, the responsibilities
they must fulfill to carry out that intent, and the system responsibili-
ties that support the Account Holders in achieving their goal. This use
case builds on a use case habit that does the actual money transfer
(Move Money and Do Accounting).

248 Chapter 9

We will examine the Move Money and Do Accounting habit (use case
fragment) in more detail below. How will that use case habit know which
accounts to use? The Transfer Money use case must be stateful: that is, it
must remember the decision made in step 3 for use in step 6. Here are three
possible approaches to passing this information:

1. The methodful object role for the Transfer Money use case
remembers the accounts and uses them when it sets up the Context
object for the Move Money and Do Accounting habit. We talk more
about this approach in Section 9.4.5.

2. The Controller takes on this responsibility somewhere over in MVC.
However, the Controller is architecturally quite a bit distant from
this use case logic, and that implies bad coupling. It may mean that
programmers will need to make coordinated updates if there is a
change in the kinds of accounts supported by the bank.

3. The Transfer Money use case stores the information in the Model. If
the Model contains a transaction object that scopes the account
selection and transfer, this could work out well. However, it may
require some ingenuity on the part of the developer if this
transaction time is overly long. It also greatly complicates things if
multiple applications simultaneously use the same Model object.

In Figure 9-8, we recall the Move Money and Do Accounting habit from
Section 7.5.1. The habit captures what the system does after the Account
Holder or some other actor initiates a money transfer. We’ll use it as our
coding example, showing how to capture those business interactions in
code. Before coding, we have to translate the use case or habit sequence into
an algorithm that a computer can execute. In general, use case scenarios
also must be translated to algorithms.

Habit Name: Move Money and Do Accounting

Preconditions: A valid Source Account and Destination Account have been identified,
and the amount to be transferred is known

Sequence:

1. SourceAccount object verifies funds available

2. SourceAccount and DestinationAccount update their balances

3. SourceAccount updates statement info

Post-conditions:
The periodic statements reflect the exact intent of the transaction (a transfer is a
transfer–not a pair of a withdrawal and a deposit)

Figure 9-8 Move Money and Do Accounting habit (updated from Figure 7-3).

Coding it Up: The DCI Architecture 249

We describe the algorithm in terms of the object roles (as discussed in
the next section) from the previous step. The focus moves from actors
in the real world to the software artifacts in the program. This is where
the transition happens that makes object-oriented programming what it
is: a way to capture the end user conceptual model in the program form.
We’ll formalize this transition in the next step when we choose a concrete
expression for object roles that captures the actor semantics, but we try to
look ahead a bit here already.

The habit in Figure 9-8 presents the perspective of a single stakeholder,
which may be the Account Holder. Yet the code must run for all stake-
holders. While there is no concept of a transaction in the mental model of
the Account Holder, there is such a concept in the mental model of the
Actuary. Such complications make the code a bit more involved than we
can deduce from any single scenario alone. This is one weakness of DCI.
One rarely will be able to find the main success scenario in the code, but
instead will find it woven together with the decision points associated with
its deviations. It would take strong measures to circumvent this problem,
and would probably require moving outside Von Neumann paradigms to
express this behavior branching in a radically different way. Rule-based
and dataflow approaches might apply here, but the solution is outside the
scope of our discussion here.

The actual algorithm may look like this; it is one of several possible
viable implementations:

1. Source account begins transaction
2. Source account verifies funds available (notice that this must be done

inside the transaction to avoid an intervening withdrawal! This step
reflects deviation 2a from Table 7-4.)

3. Source account reduces its own balance
4. Source account requests that Destination Account increase its balance
5. Source Account updates its log to note that this was a transfer (and

not, for example, simply a withdrawal)
6. Source account requests that Destination Account update its log
7. Source account ends transaction
8. Source account informs the Teller Object that the transfer has

succeeded

We map the use case steps into an algorithm (Table 9-1) that the com-
puter can execute in a deterministic way. It becomes ordinary procedural
code. We will implement the code by linking together small, individually
understandable operations on roles. The algorithm also captures business
needs that come from other requirements, such as the need to not lose any

250 Chapter 9

Table 9-1 Scenario-to-algorithm mapping.

1. Source Account verifies funds
available (deviation 2a in Table 7-4)

1. Source account begins
transaction.

2. Source account verifies that its current
balance is greater than the minimum
account balance plus the withdrawal
amount, and throws an exception if not

2. Source Account and Destination
Account update their balances

3. Source account reduces its own
balance by the amount

4. Source account requests that
Destination Account increase its balance

3. Source Account updates statement
information

5. Source account updates its log to note
that this was a transfer

6. Source account requests that
Destination Account update its log

7. Source account ends transaction

8. Source account returns status that the
transfer has succeeded

The algorithm captures deviations for situations such as negative account balances, which is not in the
sunny day scenario

money in the process (implemented as transactions) and the deviation for
a potentially negative balance (the conditional test in step 2).

9.4.3 Methodless Object Roles: The Framework
for Identifiers
Each scenario is expressed in terms of responsibilities of object roles that
originate in the mind of the end user. We want these roles also to find their
way into the mind of the programmer and into the code itself. What are
called actors in the requirements domain sometimes become object roles in
the coding domain; however, it is more common that actors remain to be
human beings outside the system, and object roles represent the concepts
inside the system – though those concepts are mirrored in those humans’
minds.

We represent methodless object roles just as identifiers, and they are
usually declared within the scope of their Context object (Figure 9-9). Each
methodless role has its own type when implemented in a language with
compile-time typing. We call these types simply methodless object role types,
and they correspond to the way we classify object roles in a use case. They
are to the what-the-system-does architecture as abstract base classes are to

Coding it Up: The DCI Architecture 251

Methodless
Role Types

Methodless
Role Type

C

class C
def method 1; end
def method 2; end

end

class CRole implements C
def method 1; doSomething; op1; end

 def method 2; doSomethingElse; end
end

class DomainClass
def op1.... end
def op2.... end

end

Methodful Role
CRole

class A a

b

c c = new DomainClass with CRole

class B

C
on

te
xt

Methodless
Roles

class C

Figure 9-9 Object roles.

the what-the-system-is architecture. The translation from use case concepts
to object role types and object roles is straightforward (see Section 7.5.5).

In C++, we code up methodless object role types as abstract base classes;
in C#, they are interfaces. Because Smalltalk and Ruby lack compile-time
typing there is neither a need nor a place for a methodless object role type.
In these more dynamic languages, object roles can be of type Object.

There is often just one just identifier within each Context for each
methodless role type. In languages with stronger compile-time typing, the
abstract base class hides the implementation of the methodful object roles
from the object role’s clients (which in turn are usually other object roles).
As we’ll see later, methodful object roles are often coded in a generic way
using techniques like templates, and we don’t want the role-level system
interactions to be dependent on domain object details that show up in the
template parameter of the methodful object role.

There is no need to separate the type of the declared methodless role
identifier from the type of the methodful role in Ruby, Objective-C and
Smalltalk. We may still want to use abstract base classes as the interfaces to
roles, for parallelism with the use of abstract base classes in the what-the-
system-is architecture described above. So we can still declare methodless
role types that have neither algorithm code nor data structure. They are
pure protocol. The implementation will come later in the methodful object
roles that are sub-classed from the methodless object role types. This
separation gives us the flexibility to define a role-based architecture up
front, building on deep domain knowledge that incorporates foresight from
previously built systems, without investing too deeply in implementation.

252 Chapter 9

module MoneySource # 1

def decreaseBalance(amount); end # 2

def transferTo(amount, recipient); end # 3

end # 4

5

module MoneySink # 6

def increaseBalance(amount); end # 7

def updateLog(message, time, amount); end # 8

def transferFrom(amount, moneySource); end # 9

end # 10

In C++:

class MoneySource { // 1

public: // 2

virtual void decreaseBalance(Currency amount) = 0; // 3

virtualvoid transferTo(Currency amount, // 4

MoneySink *recipient) = 0; // 5

}; // 6

// 7

class MoneySink { // 8

public: // 9

virtual void increaseBalance(Currency amount) // 10

= 0; // 11

virtual void updateLog(string, MyTime, // 12

Currency) = 0; // 13

virtual void transferFrom(Currency amount, // 14

MoneySource *source) = 0; // 15

}; // 16

The MoneySource object role member functions are virtual. In theory, we
could bind all the member function invocations at run time by putting all
the type information into the templates that implement the traits. However,
that would complicate the C++ code and make it less readable. Instead,
we use the common C++ approach that abstract base classes define the
protocol / interface to a group of classes whose objects will play that role.

The virtualness of the functions makes it possible for Context objects and
other citizens of the program, such as MVC objects, to access MoneySource
and MoneySink accounts generically. They also document and enforce
the domain contract for the objects that will play these object roles. For
example, all MoneySource objects must have a decreaseBalance method,
and all MoneySink objects must have an increaseBalance method. These

Coding it Up: The DCI Architecture 253

are dumb, simple domain methods that methodful object roles expect to
be present in the objects for which they execute. Placing these pure virtual
functions in these base class interfaces provides a compile-time guarantee
that the derived classes will meet the expectations of the methodful object
roles.

9.4.4 Partitioning the Algorithms Across Methodful
Object Roles
Now it’s time to capture the use case requirements as algorithms in the
methodful object roles. This is the heart of DCI’s key benefits to the system
stakeholders: that the original requirements are clear from the code itself.

Traits as a Building Block

Before discussing methodful object roles in the next section, we take a quick
diversion here to describe traits in a bit more detail. Our goal in DCI is to
separate the use case knowledge in one place from the domain knowledge
in another. We want to separate system state from system behavior. Both
the behavior knowledge and the domain knowledge have the outward
appearance of being collections of behaviors. We think of such a collection
as being an object when representing the form of the domain, and as being
an object role when representing the end user’s model of system behavior.

What we want to do in DCI is to compose an object role and its algorithms
together with an object and its domain logic. However, few programming
languages support object roles with methods and few programming lan-
guages let us program objects. Instead, the main building blocks are classes.
To a first approximation, what we want to do is to glue two classes together.
More specifically, the class representing the object roles is a collection of
stateless, generic methods. They must be able to work with a somewhat
anonymously typed notion of this or self, because the class with which
the object role is composed determines the type of the object. The class
representing the domain logic is, well, just a class. How do we compose
these two? That’s what traits do for us.

In Smalltalk

Schärli did his original implementation of traits in Smalltalk. Each class
gets an additional field that implicates the traits with which it is composed,
together with other properties of traits that we don’t need for DCI. Further-
more, in DCI, we block the possibility of trait overrides in the class. This
traits field is used during method lookup if the desired method selector
isn’t found in the methods of the class itself: the method dictionaries of the

254 Chapter 9

injected object roles (classes) are checked if the class search fails. We will
return to the Smalltalk implementation in more detail in Section 9.8.5 below.

In C++

In C++, it’s a bit more straightforward. Consider a trait T that contains
algorithms t1 and t2:

template <class derived> class T // 1
{ // 2
public: // 3

virtual void derivedClassFunction(int, int) = 0; // 4
void t1(void) { // 5

derivedClassFunction(1, 2); // 6
. . . . // 7

} // 8
void t2(void) { // 9

. . . . // 10
} // 11

}; // 12

This trait represents the object role T, a role characterized by its methods
t1 and t2. Note that T presumes on the class into which it will be injected to
support the method void derivedClassFunction(int,int) (line 4). Of
course, an object role doesn’t have to depend on the presence of a function
in its target class, but it’s a common situation that we want to support.

We include the type parameter derived for the common case that the
trait wants to express business logic in terms of the type of the actual object
involved in the use case. Making it a parameter leaves the trait generic so
that it is possible to decouple its maintenance from that of any domain
class in particular. A common use of this parameter is to provide access to
SELF, which is the (typed) object currently playing the object role:

template <class ConcreteDerived>
class TransferMoneySource: public MoneySource
{
protected:

ConcreteDerived *SELF(void) const {
return dynamic_cast<ConcreteDerived*>(this);

}

This construct makes it possible for the object role member functions to
directly invoke operations in the interface of the class whose object currently
is playing the object role. It is a more general way to achieve the same

Coding it Up: The DCI Architecture 255

effect as the pure virtual function at line 4 of the declaration of template
T above. Consider such a member function of the TransferMoneySource
object role template, which decreases the balance in its object through the
class interface of, for example, a SavingsAccount class into which it has
been injected:

void withdraw(Currency amount) {
SELF()->decreaseBalance(amount);
. . . .

}

We want to inject this object role into classes of all objects that play this
role at some time or another so the class gives those objects the appearance
of supporting t1 and t2 in their public interface. Let’s assume that one
of those objects is an object of class D. We inject the object role when we
declare D:

class D: public T<D>

{
public:

void derivedClassFunction(int a, int b) {
. . . .

}
. . . .

};

Now all instances of D will have the appearance of supporting methods t1
and t2 in their public interface. We can inject additional object roles into
D using multiple inheritance. It’s safe to do this because traits contain no
data. Of course, it’s important to resolve name collisions between object
roles (the C++ compiler will tell you if there is any ambiguity and if you
need to do so). It should also be obvious that the trait T can be injected into
other classes as well, while remaining the single, closed definition of the
algorithms t1 and t2. So, to introduce what the declaration looks like for
the account example,

class SavingsAccount:
public TransferMoneySource<SavingsAccount>

{

public:
void decreaseBalance(Currency amount) {

. . . .
}

};

256 Chapter 9

In Ruby

Ruby is even more elegant. Here is the role, TransferMoneySource,
declared as a Ruby module that will be used as a trait. In Ruby we don’t
need the extra level of the methodless object role types because the inter-
esting typing happens at run time, so it doesn’t cause type dependency
problems at compile time. However, we can include the MoneySource

methodless object role type as documentation, and for parallelism with the
class hierarchy in the domain architecture:

module TransferMoneySource

A methodful object role

include MoneySource, ContextAccessor

def transferTo

. . . .

self.decreaseBalance context.amount

. . . .

end

end

(The ContextAccessor module gives us access to the run-time Context;
we’ll be talking about Contexts in more detail later.) We also have an
ordinary domain class, like a SavingsAccount, into which we want to
inject this trait:

class SavingsAccount

. . . .

def decreaseBalance(amount)

. . . .

end

end

At some point in the execution we may instantiate a SavingsAccount

object, and shortly thereafter we may decide that we want it to participate
in a money transfer use case in which it will play the object role of a
TransferMoneySource. In Ruby, we make this association at run time:

sourceAccountForTransfer = SavingsAccount.new(account)

sourceAccountForTransfer.extend TransferMoneySource

context.setAmount amountToBeTransferred

sourceAccountForTransfer.transferTo

Coding it Up: The DCI Architecture 257

The extend directive dynamically injects the methods of Transfer-

MoneySource into the account object at run time.
Some languages support traits even more directly. Scala (Odersky et al

2008) is one such language; we will discuss its implementation of traits and
DCI in Section 9.8.1.

With traits and object role injection in hand, let’s go on to defining
methodful object roles!

Coding it Up: C++

Here we apply the approach of Section 9.2 to this example. This is a boring
algorithm to the extent that most of the processing takes place inside one
object role: the Source Account (TransferMoneySource). The Destination
Account (TransferMoneySink) contains a little logic to receive the funds.

Let’s write the C++ code first. (If you find C++ unfriendly, just skim
this section and focus on the Ruby example below.) First we define some
macros as a convenient way to look up the current object bindings for the
object roles involved in the use case. We need to look up two object roles:
the object currently playing the current object role (self), and the recipient
of the transfer. We define macros as follows:

#define SELF \ // 1

static_cast<const ConcreteDerived*>(this) // 2

// 3

#define RECIPIENT ((MoneySink*) \ // 4

(static_cast<TransferMoneyContext*> \ // 5

(Context::currentContext_)->destinationAccount())) // 6

The SELF macro evaluates to point to whatever object is playing the current
object role. It is used by code within an object role to invoke member
functions of the object role self, or this. As we shall see shortly, this allows
the code in the object role to ‘‘down-call’’ to methods of the derived class
into which the trait is injected.

Using macros makes it possible to use object role names directly in the
code. So we can say something like:

RECIPIENT->increaseBalance(amount) // 7

and that will find whatever object is currently playing the object role of
the recipient, and will apply the increaseBalance method to it. We could
also do this with inline member functions self() and recipient(), but
the function syntax is slightly distracting. Use the member functions if that
is your taste.

258 Chapter 9

Next, we create a template that implements the trait for the object role.

template <class ConcreteDerived> // 8

class TransferMoneySource: public MoneySource // 9

{ // 10

Now we come to the interesting parts: the object role behaviors. We
can start with a single, simple behavior that implements the transfer of
money from the current object role (TransferMoneySource) to the object
role TransferMoneySink.

public: // 11

// 12

// Object role behaviors // 13

void transferTo(Currency amount) { // 14

// This code is reviewable and // 15

// meaningfully testable with stubs! // 16

beginTransaction(); // 17

if (SELF->availableBalance() < amount) { // 18

endTransaction(); // 19

throw InsufficientFunds(); // 20

} else { // 21

SELF->decreaseBalance(amount); // 22

RECIPIENT->transferFrom(amount); // 23

SELF->updateLog("Transfer Out", DateTime(), // 24

amount); // 25

} // 26

gui->displayScreen(SUCCESS_DEPOSIT_SCREEN); // 27

endTransaction(); // 28

} // 29

The code also accesses the macro RECIPIENT, which returns the object
playing the object role of the TransferMoneySink. We’ll talk about that
member function later.

Here is the analogous code for the other trait, representing the Transfer-
MoneySink object role.

template <class ConcreteDerived> // 1

class TransferMoneySink: public MoneySink // 2

{ // 3

public: // 4

Coding it Up: The DCI Architecture 259

void transferFrom(Currency amount) { // 5

SELF->increaseBalance(amount); // 6

SELF->updateLog("Transfer in", // 7

DateTime(), amount); // 8

} // 9

}; // 10

The classes TransferMoneySource and TransferMoneySink together
capture the algorithm for transferring money from a source account to
a destination (sink) account – independent of whether it is a savings or
investment account. (We’ll look at savings and investments accounts
below.) The algorithm is a top-down composition of two sub-algorithms:
an outer transferTo algorithm that invokes in an inner transferFrom

algorithm. We associate those algorithms with the object roles to which they
are most tightly coupled. Other than that, they behave just as procedures
in a simple procedural design.

Each of these methodful object roles captures its part of the algorithm
of transferring money from one account to another. Each method is a
reasonably sized mental chunk of the overall algorithm. This chunking
helps us understand the overall transfer in terms of its pieces, instead of
overwhelming the reader with a single procedure that captures all the
steps of the transfer. Yes, we use procedural decomposition here – or is it
just a method invocation? The point is that the right logic is in the right
place with respect to the roles that come from the end user mental model.
The transfer logic doesn’t belong to any single account class.

Coding Up DCI in Ruby

The Ruby code is in fact a little less impressive because so many of the
type relationships are hidden until run time. That’s probably a good thing:
there are no points for impressive code. The whole point of DCI to the
programmer is that the code be more readable, and we’ll take language
support where we can get it.

The C++ version uses macros to clean up the syntax; there is a DCI
aesthetic that an object role should look like an identifier, and not like a
function call as it would in C++ if we lacked macros. Ruby’s syntax doesn’t
unnecessarily distinguish between identifiers and functions. In C++ we do
method injection using templates; in Ruby, we’ll use run-time reflection.

We can add convenience for the programmer working on the methodful
roles with a little architectural expressiveness in the methodless role.
Consider the methodless role MoneySource, which we introduced above
as an interface to the simple operations that make a MoneySource a money

260 Chapter 9

source. We can add methods that provide access to other roles used by the
methods of the methodful roles that extend MoneySource:

module MoneySource # 1

def decreaseBalance(amount); end # 2

def transferTo(amount, recipient); end # 3

Role aliases for use by the methodful role # 4

def destination_account # 5

context.destination_account # 6

end # 7

def creditors; context.creditors end # 8

def amount; context.amount end # 9

end # 10

Now, if there is code inside a methodful role like TransferMoneySource
that wants to access the SourceAccount role, it can simply invoke
source_account. We’ll see that in the code of the TransferMoneySource

module below.
Let’s start with the TransferMoneySource trait. In Ruby it is a Module.

Module is the superclass of Class in Ruby. Modules can be used as mixins
in another class. Mixins achieve our goal of composing two different classes
into one object. That gives the end user an integrated view of a single object
that combines domain functionality and business behavior, while allowing
the programmer to treat these two facets separately.

module TransferMoneySource # 1

include MoneySource, ContextAccessor # 2

3

Object role behaviors # 4

5

def transferTo # 6

beginTransaction # 7

raise "Insufficient funds" if balance < amount # 8

self.decreaseBalance amount # 9

destination_account.transferFrom amount # 10

self.updateLog "Transfer Out", Time.now, amount # 11

gui.displayScreen SUCCESS_DEPOSIT_SCREEN # 12

endTransaction # 13

end # 14

end # 15

Coding it Up: The DCI Architecture 261

The include directive on line 2 brings the Context object into the picture.
We’ll talk about Contexts in the next section. They’re the place where object
roles become connected to their objects. If the method in one methodful
object role operates on another object role in the current use case, it has
to have a handle to the object currently playing that object role so it can
make it the target of the appropriate method invocation. So if MoneySource
wants to deposit money in the MoneySink, it looks up the MoneySink object
destination_account in the Context as in line 10 in the above code.

Note that because this module invokes methods like decreaseBalance
at line 9 and updateLog at line 11, it is defined as an abstract base class
in Ruby. The domain object must provide the updateLog function. The
Context will glue together this object role with the domain object. We’ll
discuss this below.

Other than that, the transferTo method simply captures the responsi-
bilities it has as an object role in the money transfer use case.

Here is the analogous code for the TransferMoneySink object role.

module TransferMoneySink # 1
include MoneySink, ContextAccessor # 2

3
Object role behaviors # 4

5
def transferFrom # 6

self.increaseBalance amount # 7
self.updateLog ‘Transfer in’, Time.now, # 8

context.amount # 9
end # 10

end # 11

Again, these two modules implement object roles that together define
what it means to transfer funds between two accounts.

9.4.5 The Context Framework
We need a Context class for each use case. The Context brings together the
elements of the end user’s mental models for a use case.

Consider our end user Marion who wants to do a funds transfer. One
part of Marion’s brain has the concepts MoneySource and MoneySink in
mind when enacting this use case; those are the roles of what-the-system-
does. Another part of Marion’s brain has reasoned about the transfer in
terms of an amount, in terms of Marion’s InvestmentAccount and in terms
of Marion’s SavingsAccount: these are the things of what-the-system-is.

262 Chapter 9

The main job of the Context is to manage the mapping between these two
perspectives.

In more detail, the job of the Context object for a given use case is:

1. To look up the actual objects that should participate in this particular
use case invocation. This is like a ‘‘database lookup,’’ using
knowledge at hand to find the actual domain objects that represent
the data of interest in this ‘‘transaction;’’

2. To associate these objects with the object roles they play in the
current use case of this type;

3. To start enactment of the use case when its trigger method is called;
4. To publish the interface bindings for use by the methodful object

roles that participate in this use case.

Think of the associations between the object roles and objects as being
like a simple table that the Context object builds inside of itself (Figure 9-10).
A fresh Context object and a fresh set of associations between object roles
and instances come together for each use case enactment. The Context

c ab def ghk

C
la

ss
es

m
n
p

def

ghk

q
r
s

g h k

t
u
v

def

M
ethodless R

oles

Methodful Roles

User
DCI

MVC
(Environment)

Controller

View
Model

mental
model

computer
data

g
h
k

d
e
f

a
b
c

Objects

Figure 9-10 The place of the Context object.

Coding it Up: The DCI Architecture 263

builds the table using data in the environment (mainly in the data and the
Controller of the MVC code) together with its knowledge of how the use
case pieces (algorithms, object roles and objects) fit together.

The Ruby Code

Since this scenario accomplishes a money transfer, let’s name the Context
class TransferMoneyContext. The TransferMoneyContext class doesn’t
encapsulate the scenario per se, but encapsulates knowledge of what actors
to bring to the stage for a given scene of the play. It might look like this:

class TransferMoneyContext # 1

attr_reader :source_account, # 2

:destination_account, :amount # 3

The Context provides APIs that clients can use to map a role onto the
object currently playing the role. These APIs can be used by code within
one role that wants to invoke a method on another role. The methods
attr_reader, source_account and destination_account are readers
for the methodless object roles held within the body of the context object.
They are set up when the Context is initialized (below, at lines 12 and 15 of
the code). In fact, to the programmer, these accessors themselves behave
as the methodless object roles: they are the symbols used by one object role
to access another.

The code continues:

include ContextAccessor # 4

5

def self.execute(amt, sourceID, sinkID) # 6

TransferMoneyContext.new(amt, sourceID, # 7

sinkID).execute # 8

end # 9

10

We need to include a ContextAccessor (the code follows below). The
include statement makes the accessor a mixin of the Context. The def-
inition of the class method self.execute – the trigger method – at line 6
shows how he Context starts execution of a use case. This Context, called
TransferMoneyContext, is designed to start up the Transfer Money use
case. The static method creates an instance of the Context object, passing on
the execution arguments to its initialize method (also coming below).
Once the Context is set up, at line 8 this class execute method calls the
instance execute method (line 19, below) to actually run the use case.

264 Chapter 9

The initialize method is straightforward. It retrieves the objects that
will enact the use case, injects object role methods into those objects as
necessary, and leaves a Context object ready to execute:

def initialize(amt, sourceID, sinkID) # 11
@source_account = Account.find(sourceID) # 12
@source_account.extend TransferMoneySource # 13

14
@destination_account = Account.find(destID) # 15
@destination_account.extend TransferMoneySink # 16
@amount = amt # 17

end # 18
19

The Context object comes into being at the beginning of the use case
enactment. It has to go through memory and find the objects (the actors)
for this act in the play. It then has to cast them (in the theatrical sense) into
the object roles they will play. The Account.find invocations at lines 12
and 15 round up the actors, perhaps going into some database and finding
them on the basis of some criteria (here, hopefully, on the basis of having
the right account number).

The magic occurs at line 13. The extend method invocation causes the
methods of TransferMoneySource to be injected into the source_account
object. In Ruby, we can do this without regard to the class of the
source_account object.

The final bit of the Context object is the instance execution method.
The execute method (the trigger method) simply transfers control to
the method of the first methodful object role to receive control in the
use case (line 21). The execute_in_context method comes from the
ContextAccessor mixin and is used to stack contexts (as when invoking
the code of a habit from within another use case: habits are like use cases
and also have their own Contexts).

def execute # 19
execute_in_context do # 20

source_account.transferTo # 21
end # 22

end # 23

Each Context object uses a ContextAccessor:

def ContextAccessor # 1
def context # 2

Thread.current[:context] # 3

Coding it Up: The DCI Architecture 265

end # 4
5

def context=(ctx) # 6
Thread.current[:context] = ctx # 7

end # 8
9

def execute_in_context # 10
old_context = self.context # 11
self.context = self # 12
yield # 13
self.context = old_context # 14

end # 15
end # 16

This module is included in each of the methodful object roles. That is a
more static way of doing the same thing as the extend directive, bringing
in the accessor as a mixin in each of the methodful object roles. The main
job of the ContextAccessor is to stack execution contexts. Here, in Steen
Lehmann’s Ruby implementation, the Thread contexts serve as a place to
store variables that are local to currently executing thread, so they become
an ancillary part of the context stacking arrangement. The code creates no
actual threads.

The C++ Code

Here is the analogous code in C++:

class TransferMoneyContext // 1
{ // 2
public: // 3

TransferMoneyContext(void); // 4
void doit(void); // 5
MoneySource *sourceAccount(void) const; // 6
MoneySink *destinationAccount(void) const; // 7
Currency amount(void) const; // 8

private: // 9
void lookupBindings(void); // 10
MoneySource *sourceAccount_; // 11
MoneySink *destinationAccount_; // 12
Currency amount_; // 13

}; // 14

The private data sourceAccount_ and destinationAccount_ (lines 11
and 12) are the methodless object roles. They are declared in terms of the

266 Chapter 9

methodless object role types MoneySource and MoneySink, respectively.
The Context object holds a reference to an object that captures the transfer
amount as well, which was likely established during a previous use case.
During any single use case enactment, these members hold the binding of
methodless object roles to the domain objects into which the methodful
object roles have been injected. Each use case is like a performance of a
play, and we cast (in the theatrical sense) an actor to play each of the given
object roles. Here, the object roles are represented by the member data of
TransferMoneyContext, and the domain objects represent the actors. Each
actor has memorized his or her script or scripts: that is, we have injected
the methodful object roles into each domain object according to the object
roles it may be called to play. It soon will be time to call them on stage.
Lights, camera – and when we instantiate the Context object, we get action.

The TransferMoneyContext object is constructed from within an envi-
ronment, which is the term we use in DCI to describe the code that initiates
the enactment of the use case. An environment starts up a system operation.
In most applications, the environment is usually a Model-View-Controller
instance responding to a gesture from an end user. The actual invocation
may come either from the Controller or from the simple methods of MVC’s
domain models.

When we create an instance of the TransferMoneyContext class, it
finds the three objects it will be working with: the object representing the
source account, the one representing the destination account, and the one
representing the amount of the transfer. If the Controller orchestrated the
earlier use cases that established the source account, destination account,
and transfer amount, then it can remember those selections, and the
Controller and Context can agree on how to share that remembered
information. Alternatively, the system data can remember them. The
system data are part of the model information in the MVC framework
(Figure 9-10). The Controller can retrieve those data from the model and
supply them to a new TransferMoneyContext class constructor when it
is created:

TransferMoneyContext(Currency amount,

MoneySource *src,

MoneySink *destination);

Alternatively, the TransferMoneyContext object can do a ‘‘database
lookup’’ in the system domain objects, relying on identifiers declared
globally or elsewhere in the environment (e.g., in the Controller). We
assume the latter for the time being, but we’ll consider other options later.
TransferMoneyContext needs very little code to set up and execute the

use case for transferring money:

Coding it Up: The DCI Architecture 267

TransferMoneyContext::TransferMoneyContext(void) // 1

{ // 2
lookupBindings(); // 3

} // 4
// 5

TransferMoneyContext::TransferMoneyContext(// 6

Currency amount, // 7
MoneySource *source, // 8

MoneySink *destination): // 9
Context() // 10

{ // 11
// Copy the rest of the stuff // 12

sourceAccount_ = source; // 13
destinationAccount_ = destination; // 14

amount_ = amount; // 15

} // 16
// 17

TransferMoneyContext::doit(void) // 18
{ // 19

sourceAccount()->transferTo(amount()); // 20
} // 21

// 22
void // 23

TransferMoneyContext::lookupBindings(void) // 24

{ // 25
sourceAccount_ = databaseLookup(); // maybe an // 26

// Investment // 27
destinationAccount_ =; // maybe Savings // 28

amount_ = ; // chosen amount // 29
} // 30

Notice that the doit member function (the trigger member function)
retrieves the identity of the accounts from its own local member functions.
Remember that the SavingsAccount is also participating in the use case,
playing the object role of the MoneySink. How does it get access to the
Context, so that it can find the objects playing the roles with which it needs
to interact?

Making Contexts Work

The notion of Contexts is fundamental to the end user’s concept of what’s
going on at the business level.It deserves the same stature at the design
level as the concepts of this and self do at the programming level.

268 Chapter 9

General-purpose programming language constructs help us reason about
and express the behavior of local objects, but not the behavior of the system
as a system (recall Figure 9-2 on page XXX). It would be nice if programming
languages arranged for each object role method to have access to a Context
object pointer in the same way that they provide self or this. Maybe DCI
will someday lead language designers down that path. Already, Trygve
Reenskaug’s Baby UML environment does this (Reenskaug 2007), and the
Qi4j project at Jayway in Sweden is exploring this area as well.

One downside of DCI is that programmers must do some housekeeping
to keep things working. Most of this housekeeping can be captured in a few
simple practices and rules. Remember these rules when creating a Context
object:

1. Create a new Context class for each distinct use case so there can be a
new Context instance for each use case enactment. With cleverness
and experience, you can start to build class hierarchies of Context
objects that reflect some of Ivar Jacobsson’s original vision of a type
theory for use cases.

2. Each Context object should have a default constructor (one with no
arguments) that the environment (e.g., a domain data object or a
MVC controller) can conveniently instantiate and turn loose to do
what it needs to do. You might add specialized constructors that take
arguments such as references to participants in the use case.

3. Each Context object should have a separate doit (or enact or run or
other suitably named) method that runs the use case scenario.
Alternatively, you can adopt a convention that the Context
constructor itself will trigger the use case scenario implicitly.

4. Its interface should publish pointers (identifiers) for all object roles
involved in the corresponding use case. The Context object is the
oracle for the mapping from the methodless object role identifiers to
the objects bearing the methodful object role logic. Every object role
involved in the use case should be able to find any other object role
involved in the use case – and the Context object is the source.

5. The identifiers for these object roles should be typed in terms of the
methodless object role types rather than the methodful object role
declarations. This ensures that the APIs between methodful object
roles don’t depend directly on each other. This is particularly
important in languages like C++ with strong compile-time type
systems because it limits the compile-time coupling between
methodful object roles.

Our goal is to code the methods of methodful object roles so they directly
reflect the algorithm we derive from the use case. We don’t want to clutter

Coding it Up: The DCI Architecture 269

the code with explicit logic to map object roles to objects. Ideally, we refer to
an object that plays a given object role knowing only the name of the object
role it plays. We assume that the system has taken care of the rest. These
object role names are exactly the bindings made available in the interface
of the Context object. For example, in the money transfer example, the
TransferMoneyContextmember functions sourceAccount and destina-

tionAccount name the object roles with which we are concerned. So if
we make the Context object available, it is only one step away to access
the object role handles. In our Ruby example, the methodful object role
programmer has access to the methodless object role identifiers through
getter methods on the Context object (see page XXX).

Here, we propose four ways to pass a suitably typed Context reference
to the places it is needed in the code. Most of the advice is relevant to
C++. Ruby programmers can read it for inspiration, but option 4 works
well enough for all cases in Ruby that the other alternatives probably are
distractions for Ruby programmers. We can take advantage of Ruby’s
cultural conventions; C++ is used in enough different cultures that one
size does not fit all. The fourth and last proposed alternative is the recom-
mended way even for C++ programmers, but your programming culture
or application may suggest that one of the other three is better for you.

1. The simple case where object role bindings are already arguments to the
methods in the methodful object roles. The Context object itself passes
the individual methodless object role identifiers as arguments to the
methodful object roles that need them:

TransferMoneyContext::doit(void)

{

sourceAccount()->transferTo(amount(),

destinationAccount());

}

This gives the methodful object roles (such as sourceAccount()
here) access to all other objects with which they communicate,
through their role interfaces, to carry out the entire use case scenario.

2. Pass the Context to the methodful object role interface of each domain object
when the Context object maps the methodless object roles to the domain object
at the beginning of the use case. This approach simulates the approach
used by the original BabyUML implementation of DCI. Consider
the original code from our simple funds transfer example above:

270 Chapter 9

void // 1

TransferMoneyContext::lookupBindings(void) // 2

{ // 3

sourceAccount_ = databaseLookup(); // 4

destinationAccount_ = . . . // 5

amount_ = // 6

} // 7

We can add APIs to object role interfaces that take a Context object
as an argument. We must augment the interfaces of the methodless
object role types to support the invocation of setContext from the
Context objects as in lines 9–12 and 24–27:

class MoneySource { // 1

public: // 2

virtual void transferTo(double amount) = 0; // 3

virtual void decreaseBalance(double amount) // 4

= 0; // 5

virtual void payBills(void) = 0; // 6

// 7

// Context Stuff // 8

virtual void setContext(// 9

PayBillsContext*) = 0; // 10

virtual void setContext(// 11

TransferMoneyContext*)= 0; // 12

}; // 13

// 14

class MoneySink { // 15

public: // 16

virtual void increaseBalance(// 17

Currency amount) = 0; // 18

virtual void updateLog(string, // 19

Time, // 20

Currency)= 0; // 21

// 22

// Context stuff: // 23

virtual void setContext(// 24

PayBillsContext*) = 0; // 25

virtual void setContext(// 26

TransferMoneyContext*) = 0; // 27

}; // 28

Coding it Up: The DCI Architecture 271

These APIs cache the information locally for later use, but we will
implement the APIs in the methodful object roles that implement the
MoneySource and MoneySink interfaces (i.e., in TransferMoneySink

and TransferMoneySource). Now we can invoke these setContext
APIs from within the Context objects. This is the Context object’s
way of broadcasting, to all the objects involved in a given use case,
the handles to the other methodless object roles involved in the use
case. Each object can cache away the object role handle information it
feels it needs for the use case. Here is what the
TransferMoneyContext code might look like:

void

TransferMoneyContext::setContexts(void) { // 1

sourceAccount()->setContext(this); // 2

destinationAccount()->setContext(this); // 3

amount()->setContext(this); // 4

} // 5

// 6

TransferMoneyContext::TransferMoneyContext(void) // 7

{ // 8

lookupBindings(); // 9

setContexts(); // 10

} // 11

// 12

void // 13

TransferMoneyContext::lookupBindings(void) // 14

{ // 15

sourceAccount_ = databaseLookup(); // 16

destinationAccount_ = . . . // 17

amount_ = // 18

} // 19

We use the simple helper methods that live in the protected
interface of the methodful object role class to act as local handles to
the other object roles in the use case scenario:

MoneySource* template<class ConcreteDerived> // 1

class MoneySink::recipient(void) { // 2

return // 3

TransferMoneyContext_-> // 4

destinationAccount(); // 5

} // 6

272 Chapter 9

If we also have a Pay Bills use case with its own Context, then the
MoneySink object role should also support access to the object
playing the object role of the Creditors:

std::list<Creditor*> creditors(void) const { // 7

return payBillsContext_->creditors(); // 8

} // 9

For the Pay Bills scenario, we also need a PayBillsContext object
analogous to the TransferMoneyContext object:

void // 1

PayBillsContext::setContexts(void) // 2

{ // 3

sourceAccount()->setContext(this); // 4

} // 5

// 6

PayBillsContext::PayBillsContext(void) // 7

{ // 8

lookupBindings(); // 9

setContexts(); // 10

} // 11

// 12

void // 13

PayBillsContext::lookupBindings(void) // 14

{ // 15

// These are like database selects / lookups // 16

sourceAccount_ = . . . // 17

creditors_ = // 18

} // 19

In this C++ implementation, the setContext member function is
overloaded within each methodful object role. The Context type is
the basis for the overloading: there is a separate setContext for
every type of use case scenario in which the methodful object role
participates. This of course has the strong liability of needing to add
APIs to many methodful object roles every time a use case is added.
The implementations of these methods in the derived classes cache
away just those methodless object role identifiers from the Context
interface that it needs for the use case. Alternatively, each one could
cache a pointer to the Context object, which is guaranteed to persist
for the duration of the use case.

Coding it Up: The DCI Architecture 273

We also add code in the trait to remember the Context when it
identifies itself to all the objects involved in its collaboration. Here we
show two setContext setters, one for each of two different Context
objects. Because only one Context runs at a time, we can save a bit of
space by sharing the two Context pointers in a single union:

public: // 1

// Context stuff // 2

void setContext(TransferMoneyContext *c) { // 3

TransferMoneyContext_ = c; // 4

} // 5

void setContext(PayBillsContext *c) { // 6

payBillsContext_ = c; // 7

} // 8

public: // 9

TransferMoneySource(void): // 10

TransferMoneyContext_(0) { // 11

} // 12

private: // 13

union { // 14

TransferMoneyContext *TransferMoneyContext_; // 15

PayBillsContext *payBillsContext_; // 16

}; // 17

With the Context information safely cached inside the trait, the
trait can now map any object role name to the object currently
playing that object role in the existing enactment. In C++ each trait
should provide a member function named after the object role, and
each such member function should return a pointer to the object
playing that object role in the existing use case. These functions are
of protected access so they are accessible only to the object role (trait)
itself and potentially to the domain object which we anticipate might
have knowledge of this object role in unusual circumstances (though
that wouldn’t be recommended practice):

protected: // 18

MoneySink *recipient(void) { // 19

return // 20

TransferMoneyContext_-> // 21

destinationAccount(); // 22

} // 23

274 Chapter 9

Let’s say that we have a SavingsAccount with PayBillsContext

injected into it. We augment it only to inject the TransferMoneySink
object role into it. We do this by inheriting the parameterized class:

class SavingsAccount: // 1

public Account, // 2

public TransferMoneySink<SavingsAccount> {// 3

public: // 4

SavingsAccount(void); // 5

virtual Currency availableBalance(void); // 6

virtual void decreaseBalance(Currency); // 7

virtual void increaseBalance(Currency); // 8

virtual void updateLog(string, MyTime, // 9

Currency); // 10

// 11

private: // 12

// Model data // 13

Currency availableBalance_; // 14

}; // 15

CheckingAccount is similar:

class CheckingAccount: // 1

public Account, // 2

public TransferMoneySink<CheckingAccount> {// 3

public: // 4

CheckingAccount(void); // 5

virtual Currency availableBalance(void); // 6

virtual void decreaseBalance(Currency); // 7

virtual void increaseBalance(Currency); // 8

virtual void updateLog(string, MyTime, // 9

Currency); // 10

// 11

private: // 12

// The data for the model // 13

Currency availableBalance_; // 14

}; // 15

InvestmentAccount may again be similar, and so forth.
For Context objects used in this style, we can add guidelines to

those started back on page XXX:

A. Inside the constructor of each Context object, invoke the
setContext method of each object role that is involved in the use

Coding it Up: The DCI Architecture 275

case scenario, passing in the Context object itself as an argument.
This allows each object to cache references to its collaborators in
the scenario.

B. Add an API that can be used to bind to the objects attached to
each of the object roles involved in the Context’s use case scenario.

3. Pass the Context object as an argument to all methods of methodful object
roles. Think of the Context as being a super object that contains, in a
very strong sense, all objects that will be involved in a given use case
scenario. In the same sense that an object method passes the self or
this identifier to the methods it calls, so we can envision each and
every of the methods in a methodful object role receiving a reference
to their shared Context. No programming language provides such an
argument automatically as most of them do for this and self, so we
can provide it explicitly.

This approach is clumsy to the extent that each method is cluttered
with an additional argument. The Smalltalk implementation of DCI
in BabyUML avoided this clumsiness by changing the Smalltalk
compiler to look up contexts automatically, but here we try to avoid
any solution that could not easily be ported from one installation to
another. Though the approach is clumsy, it avoids the administrative
boilerplate of the previous approach above.

4. (Recommended) Let each methodful object role access a global
Context object through macros or functions whose syntax
distinguishes such access as object role access. Object roles interact
with each other to realize a use case scenario. The source code can be
written in terms of object role references rather than object references
to better match the end user mental model of the object role
interaction. Macros make it possible to use a syntax that hides the
‘‘active’’ nature of an object role name invocation: that it actually
resolves to an object pointer according to the object-role-to-object
mapping in the Context object.

At any given time, the code is executing only within a single
context. The code within one context may create another and, as
described earlier, Context objects can stack. However, the fact that
there is only one Context executing at a time makes it possible to
maintain a single, ‘‘global’’ Context object pointer. Furthermore, the
fact that the type of that context can be inferred by knowing what
function is executing (since that Context is what started it off), we
can safely use static casting to restore full Context type information
to a generic pointer that stands in for all Context types. In C++, the
pointer access can be buried inside of a macro that also does the
necessary down-casting to the appropriate derived Context class.

276 Chapter 9

That derived class provides interfaces to retrieve the object pointers
for the object roles that they represent. In Ruby, the code is
straightforward, and is how we presented the example above:

def execute # 19

execute_in_context do # 20

source_account.transferTo # 21

end # 22

end # 23

The transferTo method goes to the Context object to retrieve the
object role bindings it needs to continue its work.

So let’s again look at our banking example, which has the object
role TransferMoneySource for financial transfers. It participates in a
use case together with another object role, which we’ll call the
RECIPIENT. Together with the code for the TransferMoneySource
trait, we include the macro:

#define RECIPIENT \

((static_cast<TransferMoneyContext*> \

(Context::currentContext_)->destinationAccount()))

If you want a higher degree of paranoia in the code, you can
change the static_cast to a dynamic_cast and check for a null
result:

#define RECIPIENT \

(((dynamic_cast<TransferMoneyContext*>(\

Context::currentContext_)? \

dynamic_cast<TransferMoneyContext*>(\

Context::currentContext_): \

(throw("dynamic cast failed"), \

static_cast<TransferMoneyContext*>(0)) \

)->destinationAccount()))

Now we can define the transferTo method for the Transfer
Money Source object role in terms of the object roles, like
RECIPIENT, with which it interacts:

if (SELF->availableBalance() < amount) { // 1

endTransaction(); // 2

throw InsufficientFunds(); // 3

} else { // 4

Coding it Up: The DCI Architecture 277

SELF->decreaseBalance(amount); // 5

RECIPIENT->transferFrom(amount); // 6

RECIPIENT->updateLog(// 7

"Transfer In", // 8

DateTime(), // 9

amount); // 10

} // 11

Note the use of the special object role SELF at lines 1, 5 and 7,
which designates the object for which the object role is currently
executing. Its macro is simply:

#define SELF \

static_cast<const ConcreteDerived*>(this)

The ConcreteDerived parameter will be bound to the appropriate
template argument in the template for the TransferMoneySource
object role:

template<classConcreteDerived>
class TransferMoneySource: public MoneySource

{

Your innovativeness may discover other approaches that are even better
for your own situation. Be Agile: inspect and adapt.

Habits: Nested Contexts in Methodful Object Roles

It’s common practice to compose ‘‘re-usable’’ use case scenarios into higher-
level scenarios. Ivar Jacobsson’s original vision of use cases provided for
an includes relation between a high level use case and a ‘‘smaller’’ use
case on which it depended to complete interactions with the end user.
However, this might weaken fundamental properties of use cases, such as
being oriented toward a business goal, or reinforcing redundancy between
use cases. Here, we demote these use case fragments from the stature of
being full use cases and instead call them habits. A habit captures a set of
use case steps that recur across multiple use cases, but which in themselves
may not meet the criteria of being a use case. They just convey a step in
achieving a user goal. They are tools principally for the developer.

As discussed earlier, it is a good idea if each use case captures the entire
context of the relationships between the steps. This clarifies analysis of user

278 Chapter 9

needs and provides context for the designer. Splitting use cases using the
includes approach breaks down this continuity during analysis. However,
if we are dutiful in maintaining this continuity during analysis – even at
the expense of duplicated steps between alternate or otherwise related
scenarios – then we can factor out the common parts during design. This
is just another kind of commonality analysis. We call one of these common
fragments a habit. We represent habits in the code, but we keep them intact
with their associated non-habitual steps in their original scenarios.

Let’s use our banking software as an example. We already have a use
case for transferring money (Figure 9-7 on page 247). Let’s say that we
also want a use case for paying bills automatically from our account.
Our new use case can use the money transfer habit to make the actual
transfers, letting it take care of the logging and transactions and other
‘‘details.’’ We can see the new use case in Figure 9-11. Note the invocation
of Move Money and Do Accounting – the fact that it is underlined is a cue
that it is another habit, which for all intents and purposes behaves like a
use case at the coding level.

Use Case Name: Pay Bills from Selected Account

User Intent: To use money from one of my accounts to pay an equal amount to
each of my creditors

Motivation: To be able to let the bank automatically pay my bills monthly,
or for me to be able to pay all bills on demand with a minimum of effort

Preconditions: The Account has a list of known creditors. The Account Holder has
identified the Source Account and a default amount to pay to each creditor

Step User Intent System Responsibility

1. Homeowner selects
account list and requests
to pay all bills

Greenland Net bank Moves
Money and Does
Accounting for each account
in the list

Post-conditions:
All post-conditions of Transfer Money hold

Basic Scenario:

Figure 9-11 Pay bills use case.

Note that there are two ways of thinking about paying bills. One
approach gives the responsibility of identifying creditors to the bank;
another approach gives that responsibility to the AccountHolder. In the
former approach, any creditor who can legitimize their claim against the
AccountHolder is allowed by the bank to queue for payment. In the latter
case, the AccountHolder must remember (with the help of my software)
both to whom I owe money, and to add to or remove creditors from such

Coding it Up: The DCI Architecture 279

a list based on my discretion. These two modes of bill paying lead to two
different designs because they distribute responsibility differently. It is the
same responsibilities distributed differently across objects. What makes the
difference? The difference comes from how the responsibilities aggregate
together into different object roles. These are two different designs – and
two different use cases. Here, the AccountHolder chooses to trust the
bank to screen his or her creditors, and is happy to pay whoever the bank
believes is owed money by him or her.

The Pay Bills use case starts off knowing the SourceAccount (a role) from
which the bills will be paid, and an amount to be applied to the account
for each creditor. The Context for the Pay Bills use case will be given those
or can find them when it is created. We create a SourceAccount role that
is specifically suited to this use case because it offers a payBills method,
and it appears in the code as TransferMoneySource. We can frame out the
code (really only pseudo-code at this point) like this:

def payBills # 1
Assume that we can round up the creditors # 2
creditors.each do |creditor| # 3

transfer the funds here # 4
end # 5

In C++:

void payBills(void) { // 1
// Assume that we can round up the creditors // 2
for (; iter != creditors.end(); iter++) { // 3

try { // 4
// transfer the funds here // 5

} catch (InsufficientFunds) { // 6
throw; // 7

} // 8
} // 9

} // 10

If we wish, we later can come back and change the algorithm to sort
the creditors by amount owed, by how long it has been since we last paid
them, or whatever else we choose to do. Those are all possible use case
deviations. For now, let’s keep it simple.

We must solve two problems here. The first is to retrieve a stable set
of creditors that will remain constant across the iterations of the for
loop. Remember that DCI is designed to support the rapidly changing

280 Chapter 9

relationships between objects that one finds in a real-world system, and
that we don’t want new creditors coming into the picture after we’ve
decided to pay the bills (no more than creditors want to potentially
be dropped from the list of remunerated candidates should conditions
change). We retrieve the list of creditors from the context and store it
locally to solve that problem:

. . . .

creditors = context.creditors.dup

creditors.each do |creditor|

TransferMoneyContext.execute(creditor.amount_owed,

account_id,

creditor.account.account_id)

. . . .

Also, in C++:

. . . .

list<Creditor*> creditors = CREDITORS;

list<Creditor*>::iterator i = creditors.begin();

for (; i != creditors.end(); i++) {

. . . .

The second problem is: How do we ‘‘invoke’’ the Move Money and Do
Accounting habit from within the new code for paying bills? It is usually the
environment – a Controller or a domain object – that sets up the Context
object and invokes its doit (trigger) operation. Here, flow of control into
the code for the habit doesn’t come directly from an end user gesture, but
from another use case (which itself was probably started by an interaction
on the GUI). That means that the enclosing use case for paying bills must
set up the context for the funds transfer habit. It as if Pay Bills reaches
outside the program and presses the Transfer Money button on the screen.

As it stands, the TransferMoneyContext object makes that difficult
to do because it is in charge of mapping the use case scenario object
roles to their objects, using context from the Controller or from hints left
in the model objects. We fix this by adding a new constructor for the
TransferMoneyContext object that allows the bill payment use case code
to override the usual database select operation or other lookup used by the
Context object to associate object roles with objects:

TransferMoneyContext::TransferMoneyContext(// 1

Currency amount, // 2

MoneySource *source, // 3

Coding it Up: The DCI Architecture 281

MoneySink *destination) // 4

{ // 5

// Copy the rest of the stuff // 6

sourceAccount_ = source; // 7

destinationAccount_ = destination; // 8

amount_ = amount; // 9

setContexts(); // if using style 3 from p.275 // 10

} // 11

// 12

// We need this function only if using // 13

// style 3 from page 275: // 14

// 15

void // 16

TransferMoneyContext::setContexts(void) { // 17

sourceAccount()->setContext(this); // 18

destinationAccount()->setContext(this); // 19

} // 20

The new, complete codified use case scenario looks like this:

template <class ConcreteDerived> // 1

class TransferMoneySource: public MoneySource { // 2

. . . . // 3

// Object role behaviors // 4

void payBills(void) { // 5

// While object contexts are changing, we // 6

// don’t want to have an open iterator on an // 7

// external object. Make a local copy. // 8

std::list<Creditor*> creditors = CREDITORS; // 9

std::list<Creditor*>::iterator iter = // 10

creditors.begin(); // 11

for (; iter != creditors.end(); iter++) { // 12

try { // 13

// Note that here we invoke another // 14

// use case habit // 15

TransferMoneyContext transferTheFunds(// 16

(*iter)->amountOwed(), // 17

SELF, // 18

(*iter)->account()); // 19

transferTheFunds.doit(); // 20

} catch (InsufficientFunds) { // 21

throw; // 22

} // 23

282 Chapter 9

} // 24

} // 25

. . . . // 26

}; // 27

In Ruby, it looks like this:

module TransferMoneySource # 1

include MoneySource, ContextAccessor # 2

. . . # 3

def transfer_out # 4

raise "Insufficient funds" if balance < amount # 5

self.decreaseBalance amount # 6

destination_account.transfer_in amount # 7

self.update_log "Transfer Out", # 8

Time.now, # 9

amount # 10

end # 11

12

def pay_bills # 13

creditors = context.creditors.dup # 14

creditors.each do |creditor| # 15

TransferMoneyContext.execute(# 16

creditor.amount_owed, # 17

account_id, # 18

creditor.account.account_id) # 19

end # 20

end # 21

end # 22

When the TransferMoneyContext object comes into being, it becomes the
current context, replacing the global context pointer Context::current-
Context. That allows the methods of the methodful object roles inside the
Transfer Money use case to resolve to the correct objects. Notice that the
Context object lifetime is limited to the scope of the try block: there is
no reason to keep it around longer. At the end of the scope its destructor
is called, and it restores Context::currentContext to its previous value.
Therefore, Contexts implement a simple stack that the Context base class
can represent as a linked list:

Coding it Up: The DCI Architecture 283

class Context { // 1

public: // 2

Context(void) { // 3

parentContext_ = currentContext_; // 4

currentContext_ = this; // 5

} // 6

virtual ~Context() { // 7

currentContext_ = parentContext_; // 8

} // 9

public: // 10

static Context *currentContext_; // 11

private: // 12

Context *parentContext_; // 13

}; // 14

9.4.6 Variants and Tricks in DCI
You can use DCI to express subtle but important relationships in archi-
tecture. Here we introduce a few of them. Use your ingenuity to explore
further refinements and variants on DCI. In particular, your programming
language may offer forms of expression well suited to DCI.

Context Layering

All along we’ve been telling you that SavingsAccount is a domain class.
We lied. The real domain classes in banking are transaction logs and audit
trails. A SavingsAccount is simply a special kind of context object that
happens to correspond to the end user mental model.

We’ll cover context layering more in-depth in Section 9.6; it is a central
notion of DCI and deserves its own section. However, it is an advanced
technique, so we leave it until last.

Information Hiding

One can argue that only the methods of methodful object roles should
ever call domain member functions. In Smalltalk, of course, any of the
domain or object role methods can be invoked through any identifier
bound to the object. Ruby allows us to restrict access to symbols, but
not selectively – only on a wholesale basis. In C++ it is possible to limit
these invocations to the code for the object roles that objects of that class
are allowed to play. We can do that simply by making the domain class

284 Chapter 9

interface private, and by extending a friendship relationship to the chosen
object roles:

class SavingsAccount: // 1

public Account, // 2

public TransferMoneySink<SavingsAccount> { // 3

friend class TransferMoneySink<SavingsAccount>; // 4

public: // 5

SavingsAccount(void); // 6

private: // 7

Currency availableBalance(void); // 8

void decreaseBalance(Currency); // 9

. . . . // 10

private: // 11

// The data for the model // 12

Currency availableBalance_; // 13

}; // 14

Selective Object Role Injection

The above presentation of DCI in C++ is based on injecting object roles at
compile time. That means that any possible injection that might be needed
at run time must be set up beforehand. As a consequence, every class is
decorated with every possible object role that it might play. It might be
better if we could do injection in a more just-in-time, minimal, incremental
way. One might even call it lean injection.

Lean injection is natural to Scala. When we instantiate an object from a
class we inject all the object roles it will take on during its lifetime. Different
objects of the same class may have different object role interfaces. A Sav-

ingsAccount class might be instantiated as an object with SourceAccount

behavior in one use case, while another SavingsAccount instantiation
might be injected only with the DestinationAccount behavior.

val source = new SavingsAccount with SourceAccount

Of course, one can do the same thing with extend in Ruby. We can do
injection completely independent of instantiation, so we can inject the
object role right up until the last microsecond before its functionality is
needed:

@source_account = SavingsAccount.new

@source_account.extend SourceAccount

Coding it Up: The DCI Architecture 285

The extend directive causes the methods of (the module) SourceAccount
to also become methods of the (object) source_account (originally of
class SavingsAccount). These newly injected methods are called single-
ton methods because they belong singly to this object and have nothing
to do with the class. This is unlike the C++ solution (below), which
employs explicit class composition and traits as a way to achieve its
goal. It is more like the Scala solution, except technically there is no new
class here – not even an anonymous one. The injected methods belong to
the object.

We can implement analogous functionality in C++ though the syntax
is considerably messier. What Scala does in the above example is to
create a new, anonymous class composed from SavingsAccount with a
SourceAccount trait. C++ does not support anonymous classes, so we must
do the work that the compiler would do for us if we were programming
in Scala.

class SavingsAccountWithSourceAccount:
class SavingsAccount,
class SourceAccount<SavingsAccountWithSourceAccount>

{
public:

. . . .
};

. . . .

Account *source = new SavingsAccountWithSourceAccount;

Unfortunately, this can lead to an explosion in the number of scaffolding
classes that the programmer needs to write with very little software
engineering benefit.

9.5 Updating the Domain Logic

In the atomic event architectural style, we have two coding tasks after the
interfaces and abstract base classes are framed out: to write the functional
business logic, and to flesh out the domain logic in the Model of MVC. The
same is true here. Nevertheless, in the atomic event style these two kinds
of code co-exist in the domain classes. Here, we have already separated
out the functional business logic into the object role classes. Let’s step back
and again compare the DCI approach to domain class evolution with what
we already presented in Chapter 8.

286 Chapter 9

9.5.1 Contrasting DCI with the Atomic Event Style
There are two basic ways to add what-the-system-does functionality to
an object-oriented system: to add short, atomic operations directly to the
domain objects, or to use the DCI architecture. DCI applies only when we
have use cases that describe a sequence of tasks that are directed to some
end-user goal. If the ‘‘use case’’ is a simple, atomic action, then use cases
are the methodological equivalent of shooting a fly with an elephant gun.

Most object-oriented architectures over the years have been created
as though they were atomic event architectures, which meant that they
failed to separate the volatile what-the-system-does logic from the more
stable domain model. We described some examples in Section 8.2. Those
implementations usually correspond to highly visual or physical end-user
interactions.

It has been a long time now that objects have established a beachhead
in the traditionally algorithmic areas of business, finance, and numeric
computation. All of these areas, perhaps former strongholds of FORTRAN,
RPG, and COBOL, have traditionally embraced algorithms as a primary
organizing principle. These algorithms have multiple steps, each one of
which corresponds to some user intention. In an Agile world, which is
usually interactive, each user intention is taken in by the system and fed
back to the user in discrete acknowledgments of completion. We want
those sequences captured in the code – at least as well as we used to in
FORTRAN, RPG, and COBOL. This notion of relating to increments of
user intent comes from Constantine and Lockwood’s essential use cases
(Constantine and Lockwood 1999).

Any given system will usually have a combination of these two architec-
tural styles. We recommend the following approach as rules of thumb – but
only as rules of thumb.

■ If a system or subsystem has a critical mass of scenarios and use cases
that reflect sequences of conscious user intents, then design that entire
subsystem using the DCI architecture. Make even the atomic
operations part of the object role interfaces and keep the domain
interfaces clean. Sometimes this means duplicating the object role
interface in the domain object (because that’s the right way to elicit
the domain behavior), and it’s likely that the methodful object role
will only forward its request to the domain object. Example: Work
items in a work ordering system participate in many algorithms.
There are many dependencies between work items and scheduling
deadlines, and the algorithms are exposed to these dependencies.
Most operations on work items are really operations on object roles
(Item Being Worked On, Next Item To Be Worked, Successor Item,
Last Item, Dependent Item, etc.)

Coding it Up: The DCI Architecture 287

■ If a system or subsystem is dominated by atomic operations, and has
only a few true use cases, then use plain old object-oriented
programming. All of the system work is done by methods on the
domain objects. This may slightly erode the cohesion of the domain
objects (because the actions on them require a bit of help from other
objects) but the overall architecture will be simpler and easier to
understand. Example: A simple shape editor that is part of a document
processing application is based largely on atomic operations (resize,
move, change color). Even some operations that look like use cases,
such as evenly distributing objects along a horizontal range, can be
thought of as atomic operations on a higher order concept such as a
selection. Treat use cases as an exception.

■ If neither the use case semantics nor the atomic semantics dominate,
use a hybrid. Atomic operations can go direct to the domain objects,
while methodful object roles can be used to package up the use cases.
Example: The TextBuffer class whose instances hold the text in a text
editing application supports atomic operations such as inserting and
deleting characters, but it might also play an object role in a
spell-checking or global-search-and-replace scenario.

Take two pragmatic considerations into account when making these
selections. The first is that there is no need to choose one style over the
other. Choosing a style is a matter of meeting programmer and designer
expectations, to avoid surprises. There is no technical reason that the two
cannot co-exist. The second point, which bears additional consideration,
is that the above decisions should reflect organizational and business
concerns. A large, complex organization sometimes works more smoothly
if the code providing end-user functionality can more fully be separated
from the code that captures domain logic.

9.5.2 Special Considerations for Domain Logic in DCI
We have created the methodful object roles that are carefully translated
from the end-user use case scenarios. In an ideal world, we would do this
translation without regard to the established APIs in the domain classes or,
alternatively, we would take the domain class APIs as givens. Being more
pragmatic, we realize that the domain classes and methodful object roles
have insights to offer to each other. Just as in the atomic event architectural
style, the interface between the methodful object roles and the domain
classes evolves in three major ways: domain class method elaboration,
factoring, and re-factoring.

In Section 8.3 we described how to update domain logic for the atomic
event architecture case. In contrast with the atomic event approach, the

288 Chapter 9

DCI approach leaves the domain classes untouched and pure. What does
‘‘pure’’ mean? It means dumb. The domain classes represent system data
and the most basic functionality necessary to retrieve and modify it. These
classes have no direct knowledge of user tasks or actions: they sustain the
relatively staid state changes local to an individual object without worrying
too much about the coordinated object dynamics at the system level.

This has distinct advantages for the architect and long-term benefits to
the end user. The Model of MVC-U stays cleanly a model, rather than a
mixture of several user mental models. Instead of mixing the what-the-
system-does logic in with the what-the-system-is logic as we did in the
atomic event architectural style, here we keep it separate. Separation of
validly separate concerns is always a good architectural practice.

When we start work on a new use case scenario, the logic in the methodful
object roles usually depends on services from the domain objects. The
classes for these objects may or may not exist yet, even though the APIs
exist as coded interfaces in the architecture. Remember, the domain class
API is simply an abstract base class, and there may or may not be a class
behind it to support any given interface. The time has now come to create
those classes.

Just as in the non-DCI case, filling in the domain member functions
is straightforward. The DCI approach to actually writing domain class
member functions is the same as for writing the general domain member
functions to support the atomic event architectural style. See Section 8.3.

This leads us to a key Lean property of DCI: it leads to just-in-time
delivery of code. As each new use case scenario (or atomic action) comes
in from the market, we can encode it as a methodful role. We don’t need
to do any specific preparation ahead of time. We do, of course, need
to undertake the general preparation of a good domain analysis and the
building of the domain framework for the architecture. But that framework
consists largely of domain declarations and needs very few method bodies
to get started. After we create the methodful role increment, we can now
go into the domain classes and implement the dumb domain methods
declared in the domain framework’s abstract base classes. But we need
to implement only those methods necessary to support the new use case
(Figure 9-12). So even the domain classes can evolve incrementally – just-
in-time. This limits speculative development and the waste of rework. We
don’t defer decisions (thinking) until the last responsible moment to make
work for more immediate needs. Instead, we think more and do less up
front, and defer the implementation to the last responsible moment.

Member functions are one problem; bringing in the object role traits is
another. In C++, we use the Curiously Recurring Template Idiom (Coplien
1996) to mix in the object role logic (line 3):

Coding it Up: The DCI Architecture 289

Use Case
Scenario 1

M
et

ho
df

ul
 R

ol
es

D
om

ai
n

C
la

ss
es

Use Case
Scenario 2

Use Case
Scenario 3

Figure 9-12 Just-in-time code delivery.

class SavingsAccount: // 1
public Account, // 2
public TransferMoneySink<SavingsAccount> { // 3

public: // 4
Currency availableBalance(void); // 5

// 6
// These functions can be virtual if there are // 7
// specializations of SavingsAccount // 8
void decreaseBalance(Currency); // 9
void updateLog(string, MyTime, Currency); // 10
void increaseBalance(Currency); // 11

}; // 12
// 13

class InvestmentAccount: // 14
public Account, // 15
public TransferMoneySource<InvestmentAccount> { // 16

public: // 17
Currency availableBalance(void); // 18
void decreaseBalance(Currency); // 19
void updateLog(string, MyTime, Currency); // 20

}; // 21

290 Chapter 9

It’s as simple as that. In Ruby, it’s even simpler: the Context object
mixes in the appropriate methodful role to the domain object right before
enacting the Use Case. C++ sets up the arrangements at compile time;
Ruby, at run time (line 4):

sourceAccount = InvestmentAccount.new(account) # 1
sourceAccount.extend TransferMoneySource # 2
destinationAccount = SavingsAccount.new(account2) # 3
destinationAccount.extend TransferMoneySink # 4
sourceAccount.transferTo # 5

9.6 Context Objects in the User Mental Model:
Solution to an Age-Old Problem

In the old days we used to say that classes should reflect real-world con-
cepts, but the question arises: How real is real? Consider a SavingsAccount,
for example, as discussed throughout this chapter. Is it real? The fact is that
if you go into a bank, you can’t walk into the safe and find a bag of money
on a shelf somewhere with your account number on it.

Your SavingsAccount isn’t real, but it is part of your conceptual world
model. That leaves us with a bit of a conundrum if we want to split the
world into the domain part that reflects the actual form of the domain, and
the behavior part that corresponds to your anticipated use of the domain
model. What, exactly, is a SavingsAccount?

Before completely answering that question, it’s useful to look at what
the domain classes really are in a banking system. Banks are complex
accounting entities with money flowing in dozens of different directions
all the time, all with the goal of optimizing the bank’s margins. Your
SavingsAccount money isn’t in a bag somewhere, but is more likely lent
out to other clients so they can buy houses, or it’s invested in pork bellies
in Chicago or in gold in New York. It’s complicated, and it’s really hard to
track down exactly where your money went and when it went there.

Complicated – but not impossible. If banks are anything, they are both
accurate and precise regarding these transactions. Every transfer takes
place as a transaction that’s guaranteed not to lose any money along the
way, even if a server or a network link goes down. These transactions are
supported by database technology. As a further hedge against failure, there
are transaction logs that can be used to recreate the sequences of events that
led to your money being invested in those pork bellies. And there are audit
trails over these transaction logs that have to reconcile with each other,
further reducing the margin of error to the point of being almost negligible.

Coding it Up: The DCI Architecture 291

This has several implications. Your SavingsAccount balance at any given
time isn’t sitting in an object somewhere, nor is it even spinning on a disk
as a value. It is dynamically calculated by spanning the audit trails, adding
up any deposits (either that you made to the account, or that the bank
made in terms of an interest accrual) and subtracting any withdrawals
(including your own disbursements as well as any fees charged by the
bank). As such, the SavingsAccount isn’t a piece of ‘‘smart data,’’ but
is a collection of algorithms! It is a collection of related algorithms that
implement a collection of related use cases that work in terms of object
roles such as SourceAccounts and DestinationAccounts and ATMs, such
that those object roles are bound to the transactions and audit trails related
to your account.

We’ve seen this concept before. It’s called a Context. It’s just a collection
of related scenarios (withdrawals, deposits, and balance inquiries) toward
their respective goals, each one in some context. A Savings Account may
now look like this:

class SavingsAccount # 1

attr_reader :account_id # 2

include ContextAccessor # 3

4

def initialize(account_id, # 5

credentialsA, # 6

credentialsB) # 7

@account_id = account_id # 8

@dbh = DBI.connect(# 9

"DBI:Mysql:retail:accounthost", # 10

credentialsA, credentialsB) # 11

end # 12

We start off the account with a getter to retrieve the account ID. We can
think of the Savings Account in fact of just being a wrapper for an account
ID with a bunch of fancy methods for operating on it. That’s really what
your Savings Account is: just an account ID. Because it is a special kind of
Context (a collection of related scenarios) we include the ContextAccessor
module.

To initialize a SavingsAccount object we remember its account ID and
create a connection to the database. As a client of the Savings Account,
wanting to use it as a money source in a financial transfer, we would say:

myMoneySource = SavingsAccount.new("0991540",

"dbadmin", getpass).extend MoneySource

292 Chapter 9

This is complicated. The resulting object is a SavingsAccount domain
object, implemented as a Context object, able to play the role of a Mon-
eySource role!

What does the rest of the code look like? We can go on with a definition
of the withdraw method:

def withdraw(amount) # 14

execute_in_context do # 15

raise "Bad argument to withdraw" if amount < 0 # 16

@dbh[’AutoCommit’] = false # 17

begin # 18

raise "Inadequate funds" if balance < amount# 19

@dbh.do("INSERT INTO debits (amount, time) \# 20

VALUES(?, ?)", # 21

amount, Time.now) # 22

@dbh.commit # 23

rescue # 24

raise "Withdrawal transaction failed" # 25

@dbh.rollback # 26

end # 27

end # 28

end # 29

The execute_in_context clause allows us to stack Context objects. We
then go into the scenario between the banking software and the database
server that accomplishes the withdrawal. Note that it raises an exception
if the balance is less than the amount to be withdrawn. How is balance
calculated? As mentioned before, it is not a number sitting inside of an
object or spinning on a disk, but is dynamically calculated. It might look
something like this:

def balance # 31

return_value = 0.0 # 32

execute_in_context do # 33

begin # 34

credits = @dbh.prepare("SELECT * \ # 35

FROM credits WHERE account_id = ?") # 36

credits.execute(@account_id) # 37

credits.fetch do |row| # 38

return_value += row[1] # 39

end # 40

41

debits = @dbh.prepare("SELECT * \ # 42

Coding it Up: The DCI Architecture 293

FROM debits WHERE account_id = ?") # 43
debits.execute(@account_id) # 44
debits.fetch do |row| # 45

return_value -= row[1] # 46
end # 47

rescue # 48
raise "Balance transaction failed" # 49
@dbh.rollback # 50
return_value = 0.0 # 51

ensure # 52
credits.finish # 53
debits.finish # 54

end # 55
return_value # 56

end # 57
end # 58

An account balance by definition is the sum over all credits less the sum
of all the debits. If we add a new initialize function,

def Account.find(account_id, dbName, dbPass) # 60
SavingsAccount new(account_id, dbName, dbPass) # 61

end # 62

then the rest of the code can treat SavingsAccount instances as ordinary
domain objects, even though the class is implemented as a Context.

This DCI architecture allows us to separate the atomic concerns at
the level of databases, debits and credits from the end-user concepts
of deposits, withdrawals and accounts. Most important, it allows us to
represent a Savings Account for what it is. It doesn’t belong in the Data
part of DCI because it has no data (other than an account ID). We could
conceive of it as a role, a role played by the database or by the database
constituent parts, but that’s not very satisfying. What it is, in fact, is a
collection of habits that tie together a different set of data objects (the
database objects) every time we instantiate a new one. That fits perfectly
into the DCI architecture as a Context.

Though SavingsAccount is a Context, it occupies much the same space
in the end user’s mind as domain objects do. That means that it can play
roles such as SourceAccount and DestinationAccount. To the banker, it is
just a home for what they view as business use cases. Everybody wins.

We find hybrid Context-Domain objects in many domains. Consider a
telephone office: is a Phone Call an object? Very few telecommunications
systems have a Phone Call object, analogous to the fact that few banking
systems have Account objects. (Some systems have a notion called a

294 Chapter 9

Half Call that represents the connection interests of a single terminal
device.) Phone Call could also be a Context that manages object roles
such as CallingParty and CalledParty (pronounced ‘‘call Ed party’’). The
Context could associate these roles with the appropriate domain objects
(crosspoints, time slots, ports, conference bridges) according to the needs
of the call and the active feature set.

It is tempting to go too far in this thinking. If you bring all the Context
objects together with Domain objects, you again have mixed the what-
the-system-is methods and what-the-system-does methods together in the
same interface, and we’re back to the original problems of classic object-
oriented programming. Use your common sense. Let the stakeholder
mental models be your guide. Keep concepts separate if they have different
rates of change, if the concepts are maintained by separate groups of people,
or if they have low mutual coupling. (You can review these techniques in
Chapter 5.)

9.7 Why All These Artifacts?

You’re probably thinking: ‘‘We got by with just classes all of these years
(and sometimes with a little thinking about objects even at design time).
Why, all of a sudden, do we need all of this complexity?’’ With the more
complete DCI model in hand, we can give a better rationale than we did in
Section 8.4.

The simple answer (if you like simple answers) is that all of this is essential
complexity. Too much object-oriented design over the past twenty years
is rooted in abstraction: the conscious discarding of information to help
emphasize information of current interest. The problem with abstraction is
that the decision about what to throw away is made at one point in time and
its repercussions are often invisible until later. In software development,
such decisions are usually committed during analysis and design before
the realities of implementation hit. That’s too early to understand what
should be kept around and what should be discarded. A better position is
to ground the design in long-term domain invariants, and to keep those
around. That’s what Chapter 5 was about.

A related reason is that this is the stuff floating around in the head of the
end user. The artifacts that we have focused on in this chapter come from
the end users’ model of system behavior in the same sense that Chapter
5 is rooted in their notions of program form. To the degree the software
captures the end user’s world model, it’s a good thing:

■ Directly, it helps developers communicate with users in terms of their
mental models of the world instead of computer-ese – along the lines
of the Agile value of individuals and interactions over processes and
tools.

Coding it Up: The DCI Architecture 295

■ It provides a short path from user mental models to the code, which
makes it possible to use tight feedback loops so the code converges on
user expectations – along the lines of the Agile value of customer
collaboration.

■ It makes it easier for us to reason about forms that are important to
the user, such as the form of the sequencing of events toward a goal in
a context, and to raise our confidence that the code does what we (and
ultimately, the end user) want it to – along the lines of the Agile value
of working software.

■ It catches change were it happens and encapsulates it, rather than
spreading it across the architecture (as would be the case if we
distributed parts of the algorithm across existing classes) – along the
lines of the Agile value of responding to change.

No, we didn’t just come along and add this list as an afterthought or
as an opportunistic way to shoehorn these ideas into buzzword-dom. The
techniques have come out of a conscious effort to strive towards the values
that underlie Agile.

But let’s get out of the clouds and get into the nitty-gritty.

Why not Use Classes Instead of ‘‘Methodful Object Roles’’?

In most contemporary programming languages we actually do use classes
as a way to implement methodful object roles. Scala properly has traits,
which are in effect just methodful object roles. We foresee the need for a
new programming language feature, which is a kind of generic collection of
stateless algorithms that can be mixed into existing classes without having
to resort to a ‘‘trick’’ like traits. Traits are a convenient and adequately
expressive way of expressing these semantics in the mean time. It’s unlikely
that such a language feature would make or break a project; it would only
relieve temporary confusion or perhaps help new project members come
on board a bit more quickly.

Why not Put the Entire Algorithm Inside of the Class with which it
is Most Closely Coupled?

Even if one believed that one could identify this class, it wouldn’t be
the only one. There is another problem of essential complexity: the class
structure is not the behavior structure. There is a many-to-many mapping
between these use cases and the classes of the objects that they orchestrate.
If one class ‘‘owns’’ the algorithm, what do we do for other classes that
want to play the same use case? That would mean duplicating the code
manually, and that would be error-prone for all the reasons that we hate
code duplication. Therefore, we ‘‘re-use’’ it, semi-automatically, using traits
or another suitable method.

296 Chapter 9

Then Why not Localize the Algorithm to a Class and Tie it to
Domain Objects as Needed?

That’s essentially what we do, and essentially what traits are.

Why not Put the Algorithm into a Procedure, and Combine the
Procedural Paradigm with the Object Paradigm in a Single
Program?

This is the old C++ approach and in fact is the approach advocated in
Multi-paradigm design for C++ (Coplien 1998). The main problem with
this approach is that it doesn’t express relationships between related
algorithms, or between related algorithm fragments, that exist in the end
user’s head. It obfuscates the role structure. These algorithms are not single
closed copies of procedural code, but they play out through object roles.

A scenario that runs through objects frequently needs intimate knowl-
edge about those objects. A closed procedure can access the internals of an
object only through its public interface. If we put the use case scenarios
in closed procedures, it would cause the interfaces of the objects to bloat
to support this close relationship between the use case and the objects. By
instead injecting the procedure (bit by bit) into the objects, we allow the
code of the algorithms to gain access to object internals (such as domain
object private methods) if needed. We need to add new interfaces to domain
objects only for business-level functionality that is germane to the use case,
rather than adding low-level access methods needed by the use case.

Does this mean that procedural design is completely dead? Of course
not. There are still algorithms that are just algorithms (Freud’s ‘‘sometimes
a cigar is just a cigar’’). We can encapsulate algorithms in the private
implementation of classes using procedural decomposition. There’s noth-
ing wrong with that. However, those concerns are rarely architectural
concerns; we leave those to the cleverness of designers and architects as
they come to low-level design and the craftsmanship of implementation.

If I Collect Together the Algorithm Code for a Use Case in One
Class, Including the Code for All of its Deviations, Doesn’t the
Context Become Very Large?’

Yes, it can be large. However, this code actually does belong together in
a single administrative entity. Further, each Context encodes information
about roles that are absent from old-fashioned object-oriented programs,
so there is useful information in that extra code. The Context’s role
mapping makes it possible to leave domain classes dumb, which makes
them easier to understand. And it makes it possible to separate out
the use case code, which not only makes it easier to understand, but
which simplifies maintenance as well. We encourage you to experiment

Coding it Up: The DCI Architecture 297

with further partitioning of the Context code according to the broad
architectural principles of Chapter 5, using your common sense, taste,
insight, and experience.

So, What do DCI and Lean Architecture Give Me?

We claim that this style of development:

■ Modularizes use case scenarios and algorithms in the software so you
can reason about, unit test, and formally analyze the code with
respect to functional requirements.

■ Maps the architecture onto a domain model that reduces the time and
expense of determining where new functionality should be added.

■ Produces an architecture that can support a GUI or command set with
few surprises for the user – because it is based on the end user mental
model.

■ Gives you all the flexibility of MVC in separating the data model of
the program from the user interface.

■ Leads to a design that encourages the capture and expression of
essential complexity, which means that when you need to express
essential complexity, you don’t need to go in with dynamite and jack
hammers to make changes: the right structure is already there.

■ Allows you to introduce functionality just in time, whether the code is
in the traditional platform code or in the application code.

And Remember . . .

This is an Agile book, and you are (at least sometimes) an Agile program-
mer. We encourage you to think (oh, yeah, it’s a Lean book, too), to plan
a bit, and to not just take our word for how to do things. We provide you
examples to stimulate your thinking; these concepts in hand, you can tune
the code to your own local needs. There are a million ways to map object
roles to objects, to inject methods into classes, and to make the context
available to the methodful object roles. Here, we have focused on Ruby
and C++ implementations. The idioms and approaches you use in Java, C#
and Objective C will be different. Use your ingenuity. And read on for a
few more hints.

9.8 Beyond C++: DCI in Other Languages

We’ve illustrated DCI in Ruby here for two reasons. First, the Ruby
implementation of DCI is relatively straightforward and clean. Second,
we wanted to communicate DCI concepts clearly, and anyone who reads
Ruby code thinks that they understand it. And we’ve illustrated DCI in

298 Chapter 9

C++ here for two reasons. First, the DCI implementation is statically typed
and is based on templates; we wanted to show that DCI works even
under these restrictions. The second reason is the relative breadth-of-use of
C++ in real-time and complex problems that have the most need for such
expressiveness.

However, DCI is hardly a Ruby or C++ phenomenon. It is broadly based
on the notion of injecting collections of methods into a class. C++ and most
other classful languages tend to use classes as their building blocks for this
injection, so it reduces to class composition – Schärli’s original notion of
traits. Other languages cannot only support DCI well but in many instances
can do so better than C++ because their type systems are varyingly more
dynamic.

9.8.1 Scala
Scala is one such language. In September of 2008, Bill Venners (Odersky et
al 2008) demonstrated the first application of DCI in that language. Scala is
interesting because it has traits as full first-class language citizens; it looks
almost like it was made for DCI.

What’s more, Scala has one significant advantage over C++. C++ forces
us to do the object role injection (class composition using templates) in
the declaration of the domain class at compile time. That suggests that the
addition of any object role to a domain will require the recompilation of all
code in that domain. (As is true in almost all languages, the domain code
must actually be changed only if the new injection creates name collisions.)
In Scala, the injection is done at the point of object instantiation:

. . . .
trait TransferMoneySource extends MoneySource {
this: Account =>
// This code is reviewable and testable!
def transferTo(amount: Long, recipient: MoneySink) {

beginTransaction()
if (availableBalance < amount) {

. . . .
}
. . . .
val source = new SavingsAccount with TransferMoneySource
val sink = new CheckingAccount with TransferMoneySink
. . . .

Bill Venners has contributed a Scala variant of our running Accounts
example in Appendix A.

Coding it Up: The DCI Architecture 299

9.8.2 Python
Serge Beaumont and David Byers have contributed a rendition of the
Accounts example in Python that dates from October 2008. The Python
code is quite faithful to the DCI paradigm. It is a fascinating implementation
that binds object role methods to the domain objects in a fully dynamic
way: the object role methods are injected into the domain objects only for
the duration of the use case scenario for which they are needed! Contrast
this with the C++ implementation that pre-loads the object role methods
into the classes at compile time and the Scala implementation that loads
the object role methods into the object at instantiation time. You can find
the Python implementation in Appendix B.

9.8.3 C#
Christian Horsdal Gammelgaard has provided an early version of DCI in
C#, and it is shown in Appendix C. The code features the way that C#
handles traits using extension methods. Extension methods are methods
that can statically be bound to a class at run time. They take explicit object
pointer arguments rather than using a transparent self argument to give
the illusion of being inside of the object. With that minor concession the
illusion is good enough: collections of methods can be added to a class at
run time to give the illusion of class composition.

9.8.4 . . . and Even Java
To date, native Java solutions are less satisfying than those offered by the
older C++ language and the newer Ruby, Python and Scala solutions. These
modern languages seem to offer a good point of compromise – and per-
haps a near-ideal solution – for expressiveness and performance. The C++
solution shines in expressiveness and performance but suffers accidental
coupling that has high configuration management costs. It is difficult to
balance expressiveness (e.g., to avoid self schizophrenia) and performance
(avoiding multiple levels of function calls) in Java.

The Qi4j framework (Qi4j 2006) from Rickard Öberg and Niclas Hedhman
provides an environment that enhances Java to the point where it supports
DCI well. A Qi4j programmer decorates Java code with annotations used
by the framework to arrange the right role-to-object bindings at run time.
Qi4j is no longer pure Java, but a bit of syntactic saccharin on top of Java
that removes the problems of self-schizophrenia and run-time overhead
that plague most Java attempts at implementing DCI. Fine-tuning on Qi4j
continues and a release of the Qi4j platform is anticipated before the

300 Chapter 9

scheduled publication of this book. It is the best option today for Java
programmers to use DCI.

9.8.5 The Account Example in Smalltalk
DCI grew out of the Smalltalk culture, and most of the early work on DCI
was done in Squeak. Appendix F offers a tour through the account example
that Trygve Reenskaug developed as a concept demo in his DCI-based IDE,
BabyUML (Reenskaug 2007).

9.9 Documentation?

A good architecture reduces the need for additional explicit documentation.
In DCI, the code is the documentation of the algorithm! Abstract base
classes for the domain classes are themselves a treasure of information
about the partitioning of the system into domains and about the general
facilities of each domain. A major theme of Agile communities is code-as-
documentation, and it’s a great common-sense approach that makes life
easier for everyone who interacts with the code.

Programming language designers spend a lot of effort making languages
expressive: in fact, such expressiveness is exactly what distinguishes
programming languages. From the perspective of computational com-
plexity, all common programming languages are equally powerful. The
evidence for any programming language offering any significant produc-
tivity improvement is slim. Nevertheless, they express things differently.
Smalltalk emphasizes minimalism; C++, richness of features and static
typing; Java, a degree of cultural compatibility with C++ but with some
Smalltalk semantics; and so forth. Given all this expressiveness, your coding
language is a pretty good language for describing what the code does.

Given that, here are some good tips for supporting your documen-
tation efforts – or, more precisely, for going beyond brute-force textual
descriptions of the program design.

■ Choose the right language, and let the code do the talking. If you’re using
use cases and DCI, what language best expresses your scenarios? If
you’re using an atomic event style, what language best expresses the
semantics of the system events? Experiment with generally available
languages to see which one best fits your need. Create your own
domain-specific languages only with extreme caution; the cost in
creating and sustaining the environment and infrastructure for a
language is high, and it’s difficult enough to express yourself in an
existing language, let alone create the language in which you then
must learn to express yourself (Section 5.3.8).

Coding it Up: The DCI Architecture 301

■ Keep it short. While the abstract base classes for the domain design
should cover the scope of the business, don’t load up the interfaces
with gratuitous hooks and embellishments.

■ Choose good identifier names. This may seem like a strange item to
include in this list, but don’t underestimate its value. Lovingly name
each identifier with the same care as for a first-born child. You’ll be
using these names a lot as you pair program or otherwise discuss the
code with your colleagues. Many identifiers at the architectural level
will rise to the level of the vernacular that you share with your
customers. Strive to make them feel included by using their names for
things, rather than yours.

■ Document architectural intent with pre- and post-conditions. Just
delimiting the range of values of a scalar argument speaks volumes
about a piece of code. Such documentation evolves along with the
code (unlike external text documents which are too often forgotten),
can boost visibility of the alignment of the business structure with the
code, and can give programmers constraints that focus and guide
their work. This is Lean’s notion of failure-proof (poka-yoke) in the
small.

■ Use block comments. Let the code speak for itself on a line-by-line basis,
but use explicit comments only as the introduction to a major opus of
code (such as a class or package) or where the code is particularly
tricky. If the block is longer than 3 lines, a lot fewer people will read
it, and the chances of it being out-of-date will increase faster over time
than if it were shorter.

In general, some of the best work you can do to support the architects in
their goal to reduce discovery costs is to keep the code clean. You’ll find
your own practices and ceremonies for doing this, but take some cues from
the experts in Uncle Bob’s Clean Code book (Martin 2009).

9.10 History and Such

The ideas behind DCI first started coming together in about 2005. By
late 2006, Trygve was casting DCI (only to be so named much later) as
a technique suitable to a Theory Y management style in opposed to a
Theory X style. Theory Y aligns with many of the stereotypes of Agile,
while Theory X aligns with many of the stereotypes of the industrial age.
By August 2008 the BabyUML project had reached its goal, and DCI was a
reality. By mid-2009 implementations were being traded around the DCI
community in many programming languages.

302 Chapter 9

9.10.1 DCI and Aspect-Oriented Programming
DCI arose as a conscious attempt to capture the end user’s model of
the algorithm in the code rather than as a solution to an engineering
problem. Aspect-Oriented Programming, by contrast, can be viewed as an
engineering solution to an architectural problem. Most implementations of
AOP (most notably AspectJ (Ramnivas 2003)) make it almost impossible
to reason about the functionality of aspectualized code without global
knowledge of the program.

The origins of AOP are more profound than meets the eye. Gregor
Kiczales created them in part as a path to bring the power of reflection
to everyday programmers in familiar packaging. Reflection is a keystone
of software evolution but has been unable to capture the imagination of
the programming public. DCI is also a form of reflection, and of explicitly
manipulating the object model at run time: run-time association from object
roles to objects as the primary form of polymorphism is one example. In
this sense AOP and DCI have common goals and common roots, but the
mechanisms, syntax, and semantics have little in common.

Jim Coplien first presented DCI as an alternative to AOP at the European
Science Foundation Workshop on Correlation Theory Vielsalm, Belgium in
August 2008. DCI brings together logic that is ‘‘tangled’’ into domain classes
the same way that particle states are entangled in quantum computing.

9.10.2 Other Approaches
DCI is reminiscent of many other programming techniques and platforms:
of dependency injection, of Spring (Mak 2008), of the capability-based
architecture of the IBM System 38, of mixins (Moon 1986), as well as AOP
as mentioned above. DCI is in fact a way of implementing a regularized
reflection layer in the architecture. These other related technologies all
have elements of reflection, and many of them can be used as techniques
to implement DCI.

We usually think of reflection as a way of treating classes like objects; in
DCI, we use reflection to treat objects like roles. DCI in fact can build on
mixins: a trait is really a mechanism to implement mixins, and mixins are a
mechanism to keep business and domain logic separate in their own classes
while combining their behaviors into a single object. To that, DCI adds
the source language notion of being able to think and program in roles. It
also presumes an environment (often provided by the programmer) that
orchestrates the role-to-object mapping on a per-use-case-scenario basis.

Coding it Up: The DCI Architecture 303

Other approaches have existed in the past to separate features from
the business logic. Most of these, such as multi-paradigm design (Coplien
1998) were conceptually nice but created poor patterns of coupling and
cohesion in the architecture.

C H A P T E R

10

Epilog
As for computer professionals routinely thinking and acting with long-term

responsibility, that may come gradually as a by-product of the Year 2000
comeuppance, or life extension, of environmental lessons, and of globalization

(island Earth).

The Clock of the Long Now, p. 86.

The computer code we are offhandedly writing today could become the deeply
embedded standards for centuries to come. Any programmer or system designer

who takes that realization on and feels the full karmic burden, gets vertigo.

Jaron Lanier quoted in The Clock of the Long Now, p. 120.

Christopher Alexander, an urban planner and architect of the built world,
talks about great architecture as being the result of millions of selfless acts
of individuals. He, too, understood the Lean Secret of a whole team:

It is essential only that the people of a society, together, all the millions
of them, not just professional architects, design all the millions of
places. There is no other way that human variety, and the reality
of specific human lives, can find their way into the structure of the
places. (Alexander 1979, p. 164)

This quote, together with the quotes that open this chapter and dozens
more like them, underscore the weightiness of software architecture in the
future of humanity. In his address at OOPSLA 1996, Alexander charged
the software discipline with the future of beauty and morality in our
world – goals that come through our own architectural strivings.

As regards building architecture, Alexander (Alexander 1974, preface),
Darke (1979) and others note that no method will get you there. It is larger

305

306 Chapter 10

than the tradition of software architects alone, but is the purview of entire
teams building software. It comes down to the individual, humble acts of
a few individuals. When Grandpa Harry built his cozy, functional house
or his warm cabin in the woods, he used no method. A tightrope walker
performs largely out of instinct. Both create beauty that is more firmly
grounded in practice or experience than in any notation or any sense
of scientific grounding. Alexander’s whole quest for beauty in patterns
also traces back to this grounding in experience, exercised through trial
and error in the present. All of these processes fundamentally depend on
feedback, and feedback depends on a good dose of humility towards the
incertitude of the future.

Computing is still young; domain analysis goes back only to 1980 or
so, and DCI came together only in 2009. We look to readers of this book
to carry both into the future. The final chapter is yours. You’re Lean, and
you’re Agile, so you’ll fare well.

A P P E N D I X

A
Scala Implementation of the

DCI Account Example

import java.util.Date

// Account is just a base class for the domain

// objects, that are different kinds of accounts

// (e.g. SavingsAccount, CheckingAccount…)

trait Account {

private var balance: Long = 0

def availableBalance: Long = balance

def decreaseBalance(amount: Long) {

if (amount < 0)

throw new InsufficientFundsException

balance -= amount

}

def increaseBalance(amount: Long) {

balance += amount

}

def updateLog(msg: String, date: Date,

amount: Long) {

println("Account: " + toString + ", " + msg + ", "

+ date.toString + ", " + amount)

}

}

307

308 Appendix A

// MoneySource is a methodless role type that captures

// the form (interface) of part of the
// Transfer behavior

trait MoneySource {
def transferTo(amount: Long, recipient: MoneySink)

}

// MoneySink is a methodless role type that captures
// the form (interface) of the other part of the
// Transfer behavior

trait MoneySink {
def increaseBalance(amount: Long)

def updateLog(msg: String, date: Date, amount: Long)
}

// TransferMoneySink is the methodful role for the

// recipient in a money transfer

trait TransferMoneySink extends MoneySink {

this: Account =>
def transferFrom(amount: Long, src: MoneySource) {
increaseBalance(amount)

updateLog("Transfer in", new Date, amount)
}

}

class InsufficientFundsException

extends RuntimeException

// This is the methodful role for the source account
// for the money transfer

trait TransferMoneySource extends MoneySource {

this: Account =>

// This code is reviewable and testable!

Scala Implementation of the DCI Account Example 309

def transferTo(amount: Long, recipient: MoneySink) {

beginTransaction()

if (availableBalance < amount) {
endTransaction()

throw new InsufficientFundsException
}
else {

decreaseBalance(amount)
recipient.increaseBalance(amount)
updateLog("Transfer Out", new Date, amount)

// recipient is the role on the other
// side of the transfer

recipient.updateLog("Transfer In",
new Date, amount)

}

gui.displayScreen(SUCCESS_DEPOSIT_SCREEN)

endTransaction()
}

}

// SavingsAccount is the class of domain objects

// representing the concept of Savings Accounts,
// CheckingAccount is analogous for checking

class SavingsAccount extends Account {
override def toString = "Savings"

}

class CheckingAccount extends Account {

override def toString = "Checking"
}

// This is just the test driver.

object App extends Application {

val source =
new SavingsAccount with TransferMoneySource

val sink = new CheckingAccount with TransferMoneySink

310 Appendix A

source.increaseBalance(100000)
source.transferTo(200, sink)
println(source.availableBalance + ", " +

sink.availableBalance)
}

A P P E N D I X

B

Account Example in Python

"""

DCI proof of concept

Context is a separate object to the Collaboration (again for

exploration of alternatives). Made a class for it, but a

Dictionary is also possible.

Author: David Byers, Serge Beaumont

7 October 2008

"""

import new

class Role(object):

"""A Role is a special class that never gets

instantiated directly. Instead, when the user wants

to create a new role instance, we create a new class

that has the role and another object’s class

as its superclasses, then create an instance of that

class, and link the new object’s dict to the original

object’s dict."""

def __new__(cls, ob):

members = dict(__ob__ = ob)

if hasattr(ob.__class__, ‘__slots__’):

members[’__setattr__’] = Role.__setattr

311

312 Appendix B

members[’__getattr__’] = Role.__getattr

members[’__delattr__’] = Role.__delattr

c = new.classobj("%s as %s.%s" %

(ob.__class__.__name__,

cls.__module__, cls.__name__),

(cls, ob.__class__), members)

i = object.__new__(c)

if hasattr(ob, ‘__dict__’):

i.__dict__ = ob.__dict__

return i

def __init__(self, ob):

"""Do not call the superclass __init__. If we

did, then we would call the __init__ function in

the real class hierarchy too (i.e. Account, in

this example)"""

pass

def __getattr(self, attr):

"""Proxy to object"""

return getattr(self.__ob__, attr)

def __setattr(self, attr, val):

"""Proxy to object"""

setattr(self.__ob__, attr, val)

def __delattr(self, attr):

"""Proxy to object"""

delattr(self.__ob__, attr)

class MoneySource(Role):

def transfer_to(self, ctx, amount):

if self.balance >= amount:

self.decreaseBalance(amount)

ctx.sink.receive(ctx, amount)

class MoneySink(Role):

"""The receiving part of the transfer behavior"""

def receive(self, ctx, amount):

self.increaseBalance(amount)

Account Example in Python 313

class Account(object):
"""The class for the domain object"""
def __init__(self, amount):

print "Creating a new account with balance of " +
str(amount)

self.balance = amount
super(Account, self).__init__()

def decreaseBalance(self, amount):
print "Withdraw " + str(amount) + " from " +

str(self)
self.balance -= amount

def increaseBalance(self, amount):
print "Deposit " + str(amount) + " in " +

str(self)
self.balance += amount

class Context(object):
"""Holds Context state."""
pass

class TransferMoney(object):
"""This is the environment, like the controller,
that builds the Context and offers an interface
to trigger the Context to run"""
def __init__(self, source, sink):

self.context = Context()
self.context.source = MoneySource(source)
self.context.sink = MoneySink(sink)

def __call__(self, amount):
self.context.source.transfer_to(

self.context, amount)

if __name__ == ‘__main__’:
src = Account(1000)
dst = Account(0)

t = TransferMoney(src, dst)
t(100)

print src.balance
print dst.balance

A P P E N D I X

C

Account Example in C#

Christian Horsdal Gammelgaard provides the following code in C#, using
the extension method facility as a way to demonstrate injection of role
functionality into a domain class.

using System;

namespace DCI
{

// Methodless role types
public interface TransferMoneySink
{
}

// Methodful roles
public interface TransferMoneySource
{
}

public static class TransferMoneySourceTraits
{

public static void TransferFrom(
this TransferMoneySource self,
TransferMoneySink recipient, double amount)

{
// This methodful role can only
// be mixed into Account object (and subtypes)

315

316 Appendix C

Account self_ = self as Account;

Account recipient_ = recipient as Account;

// Self-contained readable and testable
// algorithm

if (self_ != null && recipient_ != null)
{

self_.DecreaseBalance(amount);

self_.Log("Withdrawing " + amount);
recipient_.IncreaseBalance(amount);

recipient_.Log("Depositing " + amount);
}

}

}

// Context object
public class TransferMoneyContext

{

// Properties for accessing the concrete objects
// relevant in this context through their

// methodless roles
public TransferMoneySource Source {

get; private set;

}

public TransferMoneySink Sink {

get;
private set;

}

public double Amount {

get; private set;
}

public TransferMoneyContext()
{

// logic for retrieving source and sink accounts

}

public TransferMoneyContext(
TransferMoneySource source,

Account Example in C# 317

TransferMoneySink sink,

double amount)
{

Source = source;

Sink = sink;
Amount = amount;

}

public void Doit()

{
Source.TransferFrom(Sink, Amount);

// Alternatively the context could be passed
// to the source and sink object.

}

}

///////////// Model ////////////////

// Abstract domain object
public abstract class Account
{

public abstract void DecreaseBalance(
double amount);

public abstract void IncreaseBalance(

double amount);
public abstract void Log(string message);

}

// Concrete domain object
public class SavingsAccount :

Account,

TransferMoneySource,
TransferMoneySink

{

private double balance;

public SavingsAccount()

{
balance = 10000;

}

318 Appendix C

public override void DecreaseBalance(

double amount)

{

balance -= amount;

}

public override void IncreaseBalance(

double amount)

{

balance += amount;

}

public override void Log(string message)

{

Console.WriteLine(message);

}

public override string ToString()

{

return "Balance " + balance;

}

}

///////////// Controller ////////////////

// Test controller

public class App

{

public static void Main(string[] args)

{

SavingsAccount src = new SavingsAccount();

SavingsAccount snk = new SavingsAccount();

Console.WriteLine("Before:");

Console.WriteLine("Src:" + src);

Console.WriteLine("Snk:" + snk);

Console.WriteLine("Run transfer:");

Account Example in C# 319

new TransferMoneyContext(src, snk, 1000).Doit();

Console.WriteLine("After:");
Console.WriteLine("Src:" + src);
Console.WriteLine("Snk:" + snk);

Console.ReadLine();
}

}
}

A P P E N D I X

D

Account Example in Ruby

This rendition comes from Steen Lehmann.

require 'osx/cocoa'

#!/usr/bin/env ruby
Lean Architecture example in Ruby –
with ContextAccessor

Module that can be mixed in to any class
that needs access to the current context. It is
implemented as a thread-local variable.

module ContextAccessor
def context
Thread.current[:context]

end

def context=(ctx)
Thread.current[:context] = ctx

end

def execute_in_context
old_context = self.context
self.context = self
yield
self.context = old_context

end
end

321

322 Appendix D

#
This is the base class (common code) for all
Account domain classes.
#

class Account
attr_reader :account_id, :balance

def initialize(account_id)
@account_id = account_id
@balance = 0

end

def decreaseBalance(amount)
raise "Bad argument to withdraw" if amount < 0
raise "Insufficient funds" if amount > balance
@balance -= amount

end

def increaseBalance(amount)
@balance += amount

end

def update_log(msg, date, amount)
puts "Account: #{inspect}, #{msg}, \ #{date.to_s},

#{amount}"
end

def self.find(account_id)
@@store ||= Hash.new
return @@store[account_id] if @@store.has_key?

account_id

if :savings == account_id
account = SavingsAccount.new(account_id)
account.increaseBalance(100000)

elsif :checking == account_id
account = CheckingAccount.new(account_id)

else
account = Account.new(account_id)

end
@@store[account_id] = account
account

end
end

Account Example in Ruby 323

This module is the methodless role type. Since
we don't really use types to declare identifiers,
it's kind of a hobby horse. We preserve those APIs
for consistency with the other languages. This also
provides a single common place to create aliases
for the role bindings

module MethodlessMoneySource # the API only
def transfer_out; end
def pay_bills; end

Role aliases for use by the methodful role
def destination_account; context.destination_accountend
def creditors; context.creditors end
def amount; context.amount end

end

module MethodlessMoneySink # the API only
def transfer_in; end
def amount; context.amount end

end

Here are the real methodful roles

module MoneySink
include MethodlessMoneySink, ContextAccessor

def transfer_in
self.increaseBalance amount
self.update_log "Transfer In", Time.now, amount
end

end

module MoneySource
include MethodlessMoneySource, ContextAccessor

def transfer_out
raise "Insufficient funds" if balance < amount
self.decreaseBalance amount
destination_account.transfer_in
self.update_log "Transfer Out", Time.now, amount

end

def pay_bills
creditors = context.creditors.dup
creditors.each do |creditor|

324 Appendix D

TransferMoneyContext.execute(
creditor.amount_owed,
account_id,
creditor.account.account_id)

end
end

end

#
Creditor is an actor in the use case, and is
represented by an object of this class
#

class Creditor
attr_accessor :amount_owed, :account

#
The "find" method is set up just for demonstration
purposes. A real one would search a database for a
particular creditor, based on more meaningful
search criteria
#

def self.find(name)
@@store ||= Hash.new
return @@store[name] if @@store.has_key? name

if :baker == name
creditor = Creditor.new
creditor.amount_owed = 50
creditor.account = Account.find(:baker_account)

elsif :butcher == name
creditor = Creditor.new
creditor.amount_owed = 90
creditor.account = Account.find(:butcher_account)

end
creditor

end
end

Implementation of Transfer Money use case

class TransferMoneyContext
attr_reader :source_account, :destination_account,:amount
include ContextAccessor

Account Example in Ruby 325

def self.execute(amt,
source_account_id,
destination_account_id)

TransferMoneyContext.new(amt,
source_account_id,
destination_account_id).execute

end

def initialize(amt,
source_account_id,
destination_account_id)

@source_account = Account.find(source_account_id)
@source_account.extend MoneySource

@destination_account =Account.find(destination_
account_id)

@destination_account.extend MoneySink
@amount = amt

end

def execute
execute_in_context do
source_account.transfer_out

end
end

end

#
This is the Context for the PayBills use case
#

class PayBillsContext
attr_reader :source_account, :creditors
include ContextAccessor

This is the class method which sets up to
execute the instance method. For more details,
see the text of CHAPTER 9 (page 342)
def self.execute(source_account_id,creditor_names)
PayBillsContext.new(source_account_id,creditor_names).

execute
end

def initialize(source_account_id, creditor_names)

326 Appendix D

@source_account = Account.find(source_account_id)
@creditors = creditor_names.map do |name|
Creditor.find(name)

end
end

def execute
execute_in_context do
source_account.pay_bills

end
end

end

#
The accounts are pretty stupid, with most of
the logic in the base class
#

class SavingsAccount < Account
include MoneySink

end

class CheckingAccount < Account
include MoneySink

end

#
Test drivers. First, transfer some money
#

TransferMoneyContext.execute(300, :savings, :checking)
TransferMoneyContext.execute(100, :checking, :savings)

puts "Savings: #{Account.find(:savings).balance},
Checking: #{Account.find(:checking).balance}"

Now pay some bills
PayBillsContext.execute(:checking, [:baker, :butcher])

puts "After paying bills, checking has: " \
"#{Account.find(:checking).balance}"

puts "Baker and butcher have " \
"#{Account.find(:baker_account).balance}," \
"#{Account.find(:butcher_account).balance}"

A P P E N D I X

E

Qi4j

Qi4j (Qi4j 2006) is a Java framework that support class composition to
achieve a DCI-like architecture. The implementation relies heavily on
annotations. You can read more about the annotations and the framework
in the reference. This code comes from Steen Lehmann.

@Concerns({PurchaseLimitConcern.class,
InventoryConcern.class})

public interface OrderComposite
extends Order, HasLineItems, Composite

{

}

public abstract class InventoryConcern

extends ConcernOf<Invoice>
implements Invoice

{
@Service InventoryService inventory;

public void addLineItem(LineItem item)
{

String productCode = item.getProductCode();
int quantity = item.getQuantity();
inventory.remove(productCode, quantity);

next.addLineItem(item);
}

327

328 Appendix E

public void removeLineItem(LineItem item)

{
String productCode = item.getProductCode();
int quantity = item.getQuantity();

inventory.add(productCode, quantity);
next.removeLineItem(item);

}
}

@Concerns({PurchaseLimitConcern.class,
InventoryConcern.class})

public interface OrderComposite

extends Order, HasLineItems, EntityComposite
{
}

@SideEffects(MailNotifySideEffect.class)

@Concerns({PurchaseLimitConcern.class,
InventoryConcern.class})

public interface OrderComposite

extends Order, HasLineItem, EntityComposite
{
}

public abstract class MailNotifySideEffect
extends SideEffectOf<Order>

implements Order
{

@Service MailService mailer;

@This HasLineItems hasItems;
@This Order order;

public void confirmOrder()
{

List<LineItem> items = hasItems.getLineItems();

StringBuilder builder = new StringBuilder();

builder.append("An Order has been made.\n");
builder.append("\n\n");
builder.append("Total amount:");

builder.append(order.getOrderAmount());
builder.append("\n\nItems ordered:\n");
for(LineItem item : items)

Qi4j 329

{
builder.append(item.getName());
builder.append(" : ");
builder.append(item.getQuantity());
builder.append("\n");

}
mailer.send("sales@mycompany.com",

builder.toString());
}

}

A P P E N D I X

F

Account Example in Squeak

This is a fileout of Trygve Reenskaug’s Squeak implementation of the
BankTransfer example. The standard Squeak text format is somewhat
unreadable, so the file has been hand edited to simplify reading. (Actual
program statements are numbered, all other lines are comments.)

The appendix is broken up into sections that correspond to the views of
the program supported.

A method in one object is triggered by a message that is sent from a
method in the same or another object. The Squeak syntax is simple, if
unusual. In each example below, a corresponding Java-like expression is added
below it.

Assignment to a variable is done with :=

foo := 6.

foo = 6;

Comments are enclosed in double quotes: ‘‘This is a comment’’
There are three kinds of messages: Unary, binary, and keyword. Unary

messages are executed first, then binary, and finally keyword messages.
Unary message:

account balance

account.balance()

Binary message:

a + b

331

332 Appendix F

Here, a is an object, + is a message selector, b is an argument. In Java we
would just say a+b.

Keyword message:

ctx transfer: 500 fromAccount: 1111 toAccount: 2222
ctx.transfer:fromAccount:toAccount:
(500, 1111, 2222).

Colon is a permissible character in message selectors (method names).
A class is created by sending a message to its superclass:

Object subclass: #BB5Testing
instanceVariableNames: ‘ ’
category: ‘BB5Bank-Testing’

All methods return a value. The default is self if nothing else is specified:

ˆ returnValue
return returnValue

Statements are separated by a point (.). Cascaded messages to the same
receiver are separated by semicolons (;). So:

self
fromAccountNumber: from;
toAccountNumber: to;
executeInContext: [self transferAmount: amount].

is equivalent to:

self fromAccountNumber: from.
self toAccountNumber: to.
self executeInContext: [self transferAmount: amount].

An expression in square brackets ([]) is a block object. It can be saved in
instance variables, passed around in arguments. It is evaluated by sending
it a suitable messages such as value, value:, value:value: depending
on the number of arguments. It is most commonly used in a test expression
such as:

balance < amount ifTrue:
[self notify: ‘Insufficient funds’. ˆ self].

if (balance < amount) {
self.notify: (’Insufficient funds’); return self}

Account Example in Squeak 333

A DCI example:

self executeInContext: [self transferAmount: amount]

F.1 Testing Perspective

Object subclass: #BB5Testing

instanceVariableNames: ‘ ’

category: ‘BB5Bank-Testing’

"Tests (static methods)"
BB5Testing class>>test1

" START HERE to perform test.No visible result if
test OK."

| bank ctx |
bank := BB5Bank new.
(bank addCheckingAccountNumbered: 1111) increase: 2000.
bank addSavingsAccountNumbered: 2222.
self assert:

[(bank findAccount: 1111) balance = 2000.
(bank findAccount: 2222) balance = 0].

ctx := BB5MoneyTransferContext new.
ctx bank: bank.
ctx transfer: 500 fromAccount: 1111 toAccount: 2222.
self assert:

[(bank findAccount: 1111) balance = 1500.
(bank findAccount: 2222) balance = 500].

F.2 Data Perspective

Note: The two account classes are identical. They are kept separate for
illustrative purposes.

F.2.1 BB5Bank

Object subclass: #BB5Bank
instanceVariableNames: ‘accounts’

334 Appendix F

category: ‘BB5Bank-Data’

"private methods"

BB5Bank>>initialize

super initialize.

accounts := Dictionary new.

"access methods"

BB5Bank>>addCheckingAccountNumbered: aNumber

ˆ accounts at: aNumber put: BB5CheckingAccount new.

BB5Bank>>addSavingsAccountNumbered: aNumber

ˆ accounts at: aNumber put: BB5SavingsAccount new.

BB5Bank>>findAccount: accountNumber

ˆ accounts at: accountNumber ifAbsent: [nil]

F.2.2 BB5SavingsAccount

Object subclass: #BB5SavingsAccount

uses: BB5MoneyTransferContextTransferMoneySink

instanceVariableNames: ‘balance’

category: ‘BB5Bank-Data’

"private methods"

BB5SavingsAccount>>initialize

super initialize.

balance := 0

"access methods"

BB5SavingsAccount>>balance

ˆ balance
BB5SavingsAccount>>decrease: amount

balance := balance - amount.

BB5SavingsAccount>>increase: amount

balance := balance + amount.

F.2.3 BB5CheckingAccount

Object subclass: #BB5CheckingAccount

uses: BB5MoneyTransferContextTransferMoneySource

Account Example in Squeak 335

instanceVariableNames: ‘balance’

category: ‘BB5Bank-Data’

"private methods"
BB5CheckingAccount>>initialize

super initialize.
balance := 0.

"access methods"
BB5CheckingAccount>>balance

ˆ balance
BB5CheckingAccount>>decrease: amount

balance := balance - amount.
BB5CheckingAccount>>increase: amount

balance := balance + amount.

F.3 Context Perspective

Note: All context classes are subclass of BB1Context.

F.3.1 BB5MoneyTransferContext

BB1Context subclass: #BB5MoneyTransferContext

uses: BB5MoneyTransferContextMyContext

instanceVariableNames:

‘bank fromAccountNumber toAccountNumber’

category: ‘BB5Bank-Context’

"role binding methods"
BB5MoneyTransferContext>>MyContext

ˆ self
BB5MoneyTransferContext>>TransferMoneySink

ˆ bank findAccount: toAccountNumber
BB5MoneyTransferContext>>TransferMoneySource

ˆ bank findAccount: fromAccountNumber

"access methods"
BB5MoneyTransferContext>>bank: bnk

bank := bnk.

336 Appendix F

BB5MoneyTransferContext>>fromAccountNumber: aFromNumber
fromAccountNumber := aFromNumber.

BB5MoneyTransferContext>>toAccountNumber: aToNumber

toAccountNumber := aToNumber.

"trigger methods"
BB5MoneyTransferContext>>transfer: amount

fromAccount: from toAccount: to
self

fromAccountNumber: from;
toAccountNumber: to;
executeInContext: [self transferAmount: amount].

"Dive into role interaction, start in"
"role ‘MyContext’ which is identical to self"

"role structure methods"
BB5MoneyTransferContext class>>roleStructure

ˆ IdentityDictionary new
at: #TransferMoneySource put: #(#TransferMoneySink);
at: #TransferMoneySink put: #();
at: #MyContext put: #(#TransferMoneySource);
yourself.

BB5MoneyTransferContext class>>roleNames
ˆ self roleStructure keys

F.4 Interaction (RoleTrait) Perspective

Note: Traits are named by concatenating the Context name with the
Role name.

F.4.1 BB5MoneyTransferContextTransferMoneySource

BB1RoleTrait named: #BB5MoneyTransferContextTransfer
MoneySource

roleContextClassName: #BB5MoneyTransferContext

category: ‘BB5Bank-Traits’

BB5MoneyTransferContextTransferMoneySource>>transfer: amount

self withdraw: amount.
(BB5MoneyTransferContext playerForRole:

Account Example in Squeak 337

#TransferMoneySink) deposit: amount.

BB5MoneyTransferContextTransferMoneySource>>

withdraw: amount

self balance < amount ifTrue:
[self notify: ‘Insufficient funds’. ˆ self].

self decrease: amount.

F.4.2 BB5MoneyTransferContextMyContext

BB1RoleTrait named: #BB5MoneyTransferContextMyContext

roleContextClassName: #BB5MoneyTransferContext

category: ‘BB5Bank-Traits’

"role methods"

BB5MoneyTransferContextMyContext>>transferAmount: amount

(BB5MoneyTransferContext playerForRole:
#TransferMoneySource) transfer: amount

F.4.3 BB5MoneyTransferContextTransferMoneySink

BB1RoleTrait named: #BB5MoneyTransferContextTransfer

MoneySink

roleContextClassName: #BB5MoneyTransferContext

category: ‘BB5Bank-Traits’

"MoneySink role methods"

BB5MoneyTransferContextTransferMoneySink>>deposit: amount

self increase: amount.

F.5 Support Perspective (Infrastructure Classes)

F.5.1 BB1Context (common superclass for all contexts)

Object subclass: #BB1Context

instanceVariableNames: ‘data roleMap mergedContext’

338 Appendix F

category: ‘BB1IDE-Support’

"execution methods"
BB1Context>>executeInContext: aBlock

" Put this context on the execution stack. "
self reselectObjectsForRoles.
ˆ aBlock

on: self
do: [:ex | ex]

"data manipulation methods"
BB1Context>>reselectObjectsForRoles

| messName mCtx mRoleMap |
roleMap := IdentityDictionary new.
self class roleNames

do: [:roleName |
self roleMap

at: roleName
put: (self

perform: roleName

ifNotUnderstood: [nil])]

"runtime services (static methods)"
BB1Context class>>currentContexts

| myInstances ctx |

myInstances := OrderedCollection new.
ctx := thisContext." Squeak context, not DCI context!! "

" move down the stack "
[ctx := ctx findNextHandlerContextStarting.
(ctx notNil and: [(ctx tempAt: 1) class == self])

ifTrue: [myInstances addLast: (ctx tempAt: 1)].
ctx notNil]

whileTrue: [ctx := ctx sender].
ˆ myInstances

BB1Context class>>playerForRole: roleName

self currentContexts
do: [:contextb |

(contextb includesKey: roleName)
ifTrue: [ˆ contextb at: roleName].

nil].
self error: ‘role named: #’ , roleName , ‘ not found’.
ˆ nil

Account Example in Squeak 339

F.5.2 BB1RoleTrait (all RoleTraits are instances
of this class)
This class is part of the DCI infrastructure for compiling RoleMethods etc.
The name of a Role Trait is the concatenation: ContextName, RoleName

Trait subclass: #BB1RoleTrait

instanceVariableNames: ‘roleContextClassName’

category: ‘BB1IDE-Support’

BB1RoledTrait methods, including a spacial compiler for Role Methods,
are not shown here.

Bibliography

(Adams et al 1998) Adams, Michael, James Coplien, Robert Gamoke, Robert
Hanmer, Fred Keeve, and Keith Nicodemus. Fault-tolerant telecommu-
nication system patterns. In Linda Rising, ed., The Patterns Handbook:
Techniques, Strategies, and Applications. Cambridge University Press,
January 1998, 189–202.

(Adolph et al 2002) Adolph, Steve, Paul Bramble, Alistair Cockburn, and
Andy Pols. Patterns for effective use cases. Reading, MA: Addison-
Wesley, 2002.

(Alexander 1974) Alexander, Christopher. Notes on the Synthesis of Form.
Oxford University Press, paperback edition, 1974.

(Alexander 1979) Alexander, Christopher. The Timeless Way of Building.
Oxford: Oxford University Press, 1979.

(Allen and Henn 2006) Allen, Thomas J., and Gunter Henn. The organi-
zation and architecture of innovation: Managing the flow of technology.
Oxford: Butterworth-Heinemann, 2006.

(Auer and Miller 2002) Auer, Ken, and Roy Miller. Extreme programming
applied: playing to win. Pearson Education, 2002.

(Austin et al 1998) Austin, S., Baldwin, A., Li, B., and Waskett, P. Analytical
Design Planning Technique (ADePT): a dependency structure matrix tool
to schedule the building design process. Construction Management and
Economics, December 1999.

(Ballard 2000) Ballard, Glenn. Positive vs. negative iteration in design.
From URL www.leanconstruction.org/pdf/05.pdf, accessed 18 July
2008.

(Beck 1991) Beck, Kent. Think like an object. In Unix Review, September
1991, ff. 41.

341

342 Bibliography

(Beck 1994) Beck, Kent. Simple Smalltalk testing: with patterns. Smalltalk
Report 4, October 1994.

(Beck 1999) Beck, Kent. Extreme programming explained: Embrace change.
Reading, MA: Addison-Wesley, 1999.

(Beck et al 2001) Beck, Kent, et al. The Agile Manifesto. www.agilemani-
festo.org, February 2001, accessed 15 November 2008.

(Beck 2002) Beck, Kent. Test-driven development by example. Addison-
Wesley, 2002.

(Beck 2005) Beck, Kent. Extreme programming explained, 2nd edition.
Pearson Publications, 2005.

(Beck and Gamma 1998) Beck, Kent, and Eric Gamma. Test infected:
Programmers love writing tests. Java Report, July 1998.

(Beyer and Holtzblatt 1998) Beyer, Hugh, and Karen Holtzblatt. Contextual
design. San Francisco: Morgan Kauffman, 1998.

(Bjørnvig 2003) Bjørnvig, Gertrud. Patterns for the role of use cases.
Proceedings of EuroPLoP ’03, p. 890.

(Boehm 1976) Boehm, B.W. Software engineering. IEEE Trans. Computers.
C-25 (Dec. 1976), 1226–1241.

(Boehm 1981) Boehm, Barry W. Software engineering economics. Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

(Boehm 2009) Boehm, Barry. Balancing agility and architecture. Keynote
at JaOO 2009. Aalborg, Denmark, 5 October, 2009.

(Booch 2006) Booch, Grady. Patterns, Patterns and more Patterns. 2 March,
2006. URL www.handbookofsoftwarearchitecture.com/index.jsp?

page=Blog&part=2006, accessed 13 November 2009.
(Brand 1999) Brand, Stewart. The Clock of the Long Now. New York: Basic

Books, 1999.
(Brandt 1995) Brandt, Stewart. How buildings learn: what happens to

them after they’re built. New York: Penguin, 1995.
(Buschmann et al 1996) Pattern-oriented software architecture volume 1: a

system of patterns. Wiley, 1996.
(Buschmann, Henney and Schmidt 2007a) Buschmann, Frank, Kevlin

Henney and Douglas C. Schmidt. Pattern-oriented software architecture
volume 4: a pattern language for distributed computing. Wiley, 2007.

(Buschmann, Henney and Schmidt 2007b) Buschmann, Frank, Kevlin
Henney and Douglas C. Schmidt. Pattern-oriented software architecture
volume 5: on patterns and pattern languages. Wiley, 2007.

(Buxton and Randell 1969) Buxton, J. N., and Randell, B., eds. Software
engineering techniques: Report of a conference sponsored by the NATO
Science Committee, Rome, Italy, 27–31 Oct. 1969. Brussels: NATO,
Scientific Affairs Division.

Bibliography 343

(Byers 2008a) Byers, David. Personal E-mail correspondence, 7 October
2008.

(Chelimsky et al 2010) Chelimsky, David, et al. The RSpec book: Behaviour
driven development with Rspec, Cucumber, and friends. Pragmatic
Bookshelf, 2010.

(Cockburn 1999) Cockburn, Alistair. Software development as a coop-
erative game. Talk at 1999 ObjectActive conference, MidRange, South
Africa, 1999. URL http://alistair.cockburn.us/Software+development
+as+a+cooperative+game, accessed 7 November 2009.

(Cockburn 2001) Cockburn, Alistair. Writing effective use cases. Reading,
MA: Addison-Wesley, 2001.

(Cockburn 2007) Cockburn, Alistair. Agile software development: The
cooperative game, 2nd ed. Reading, MA: Addison-Wesley 2007.

(Cockburn 2008) Cockburn, Alistair. Why I still use use cases. 9 January,
2009. URLhttp://alistair.cockburn.us/Why+I+still+use+use+
cases, accessed 18 November 2009.

(Cohn 2004) Cohn, Mike. User stories applied: For agile software develop-
ment. Reading MA: Addison Wesley, 2004.

(Cohn 2010) Cohn, Mike. Succeeding with Agile: Software Development
using Scrum. Reading, MA: Addison-Wesley, 2010.

(Constantine and Lockwood 1999) Constantine, Larry, and Lucy A. D.
Lockwood. Software for use: a practical guide to models and methods of
usage-centered design. Reading, MA: Addison-Wesley, 1999.

(Coplien and Devos 2000) Coplien, James, and Martine Devos. Architecture
as metaphor. Proceedings of the World Multiconference on Systemics,
Cybernetics and Informatics, Orlando, Florida, Institute of Informatics
and Systemics, pp. 737–742., July 24, 2000.

(Coplien and Erickson 1994) Coplien, James O., and Jon Erickson. Exam-
ining the software development process. Dr. Dobbs Journal of Software
19(11), October 1994, pp. 88–95.

(Coplien and Henney 2008) Coplien, James, and Kevlin Henney.
Agile architecture is not fragile architecture. Presentation at QCon
2008, 10 June, 2008, London. www.infoq.com/presentations/Agile-
Architecture-Is-Not-Fragile-Architecture-James-Coplien-
Kevlin-Henney, accessed 23 August 2009.

(Coplien, Hofmann and Weiss 1998) James Coplien, Daniel Hoffman,
David Weiss. Commonality and variability in software engineering.
IEEE Software 15(6), November/December 1998, p. 40.

(Conway 1986) Conway, Melvin E. How do committees invent? Datama-
tion 14(4), April, 1968.

(Coplien 1992) Coplien, James O. Advanced C++ programming styles
and idioms. Reading MA: Addison-Wesley, 1992.

344 Bibliography

(Coplien 1996) Coplien, James O. A curiously recurring template pattern. In
Stanley B. Lippman, editor, C++ Gems, 135–144. Cambridge University
Press, New York, 1996.

(Coplien 1998) Coplien, James O. Multi-paradigm design for C++ Reading,
MA: Addison-Wesley, 1998.

(Coplien and Harrison 2004) Coplien, James, and Neil Harrison. Organiza-
tional patterns of agile software development. Upper Saddle River, NJ:
Prentice-Hall/Pearson, July 2004.

(Coplien and Sutherland 2009) Coplien, James and Jeff Sutherland. Scrum
sensibilities. Scrum Gathering, Orlando, Florida, 16 March 2009. URL
www.scrumalliance.org/resources/618, accessed 13 November 2009.

(Coplien et al 1998) Coplien, James O., Daniel M. Hoffman and David
M. Weiss. Commonality and variability in software engineering. IEEE
Software, 15(6), November/December 1998, pp. 37–45.

(Cross 1984) Cross, Nigel, ed. Developments in design methodology.
Chichester, UK: Wiley, 1984.

(Dahl and Nygaard 1966) Dahl, Ole-Johan, and Kristen Dahl and Nygaard.
SIMULA – an Algol-based simulation language. In D. E. Knuth, ed.
Communications of the ACM 9(9), August/September 1966.

(Darke 1979) Darke, J. The primary generator and the design process.
Design Studies, 1(1):36–44., 1979.

(Davidson 1999) Davidson, E.J. Joint application design (JAD) in practice.
Journal of Systems & Software, 45(3), 1999, 215–223.

(DuBois 2006) DuBois, Paul. Using the Ruby DBI module. URL
www.kitebird.com/articles/ruby-dbi.html, 28 November 2006,
accessed 27 December 2009.

(Eisenecker and Czarnecki 2000) Eisenecker, Ulrich, and Krysztof Czar-
necki. Generative programming: Methods, techniques and applications.
Reading, MA: Addison-Wesley, 2000.

(Evans 2003) Evans, Eric. Domain-driven design: tackling complexity in
the heart of software. Addison-Wesley: 2003.

(Fowler 2006) Fowler, Martin. Using an agile software process with off-
shore development. Web site. http://martinfowler.com/articles/
agileOffshore.html July 2006, accessed 26 September 2009.

(Fuhrer 2008) Fuhrer, Phillip. Personal E-mail conversation of 17 October
2008.

(Fraser et al 2003) Fraser, Steven, Kent Beck, Bill Caputo, Tim Mackinnon,
James Newkirk and Charlie Pool. dTest driven development (TDD). In
M. Marchesi and G. Succi, eds., XP 2003, LNCS 2675, pp. 459–462., 2003.
 Springer-Verlag, Berlin and Heidelberg, 2003.

(Gabriel 1998) Gabriel, Richard P. Patterns of software: Tales from the
software community. New York: Oxford University Press, 1998.

Bibliography 345

(Gamma et al 2005) Gamma, Eric, et al. Design patterns: elements of
re-usable object-oriented software. Reading, Ma: Addison-Wesley,
2005.

(Glass 2006) Glass, Robert L. The Standish Report: Does it really describe
a software crisis? CACM 49(8), August 2006, pp. 15–16.

(Graham 2003) Graham, Ian. A pattern language for web usability. Reading,
MA: Addison-Wesley, 2003.

(Greening 2010) Greening, Dan. Enterprise Scrum: Scaling Scrum to the
executive level. Kauai, Hawaii: HICSS 2010, January 2010.

(Hanmer 2007) Hanmer, Robert S. Patterns for fault tolerant software. John
Wiley, 2007.

(Henning and Vinovski 1999) Henning, Michi, and Steve Vinoski.
Advanced CORBA programming with C++. Reading, MA: Addison-
Wesley, 1999.

(Hen-tov 2009) Hen-tov, Atzmon. E-mail correspondence of 12 November
2009.

(IEEE1471 2000) IEEE recommended practice for architectural description
of software-intensive systems. ANSI/IEEE 1471-2007, ISO/IEC 42010:
2007.

(Jacobsson 1992) Jacobsson, Ivar. Object-oriented software engineering: A
use-case driven approach. Reading, MA: Addison-Wesley, 1992.

(Janis 1971) Janis, Irving L. Groupthink. Psychology Today, November
1971, 43–46, 74–76.

(Janzen and Saledian 2008) Janzen and Saledian, Does test-driven devel-
opment really improve software design quality? IEEE Software 25(2),
March/April 2008, pp. 77–84.

(Jeffries, Anderson and Hendrickson 2001) Jeffries, Ron, Ann Anderson
and Chet Hendrickson. Extreme programming installed. Reading, MA:
Addison-Wesley, 2001.

(Kay 1972) Kay, Alan. A personal computer for children of all ages. Xerox
Palo Alto Research Center, 1972.

(Kerth 2001) Kerth, Norman L. Project retrospectives: A handbook for
team reviews. Dorset House Publishing Company, 2001.

(Kircher and Jain 2004) Kircher, Michael, and Prashant Jain. Pattern-
oriented software architecture volume 3: patterns for resource manage-
ment. Wiley, 2004.

(Knauber et al 2002) Knauber et al. Quantifying product line benefits. In
F. van der Linden, ed., Lecture Notes on Computer Science 2290, PFE-4
2001. Springer-Verlag, 2002, p. 16.1.

(Kruchten 1999) Kruchten, Philippe. The Software architect, and the
software architecture team. In P. Donohue, ed., Software Architecture.
Boston: Kluwer Academic Publishers, pp. 565–583.

346 Bibliography

(Kruchten Capilla and Dueñas 2009) Kruchten, Philippe, Rafael Capilla,
Juan Carlos Dueñas, The decision view’s role in software architecture
Practice. IEEE Software 26(2), Mar./Apr. 2009, pp. 36–42.

(Laurel 1993) Laurel, Brenda. Computers as theatre. Reading, MA:
Addison-Wesley, 1993.

(Lieberherr 1996) Lieberherr, Karl J. Adaptive object-oriented soft-
ware: The Demeter method with propagation patterns. PWS Pub-
lishing Company, Boston, 1996. ISBN 0-534-94602-X, available at
www.ccs.neu.edu/research/demeter.

(Lientz, Swanson and Tompkins 1978) Lientz, B.P., E.B. Swanson and
G.E. Tompkins. Characteristics of application software maintenance.
Communications of the ACM 21(6), 1978, pp. 466–471.

(Liker 2004) Liker, Jeffrey K. The Toyota Way. McGraw-Hill, 2004.
(Liskov 1986) Liskov, Barbara. Data abstraction and hierarchy. SIGPLAN

Notices 23(5), May 1986.
(Martin, Biddle, and Noble 2004) Martin, Angela, Robert Biddle and James

Noble. The XP customer role in practice: Three case studies. Proceedings
of the Second Annual Agile Development Conference, 2004.

(Mak 2008) Mak, Gary. Spring recipes: A problem-solution approach. New
York: Apress (Springer-Verlag), 2008.

(Martin 2004) Martin, Angela. Exploring the XP customer role, part II.
Proceedings of the 5th annual conference on Extreme Programming and
Agile Processes in Software Engineering, Jutta Eckstein and Hubert
Baumeister, eds.

(Martin 2009) Martin, Robert C., et al. Clean code: A handbook of agile
software craftsmanship. Reading, MA: Pearson, 2009.

(Meyer 1994) Meyer, Bertrand. Object-oriented software construction
(second edition). Prentice-Hall, 1994.

(Moo 1986) Moon, David A. Object-oriented programming with Flavors.
Proceedings of OOPSLA 1986. ACM Software, 1986.

(Moore 2001) Moore, Thomas. Original Self. New York: Perennial, 2001.
(Nani2006) Nani, Christel. Sacred Choices: Thinking outside the tribe to

heal your spirit. Harmony, 2006.
(Naur and Randell 1968) Naur, Peter and B. Randell, eds. Proceedings of

the NATO conference on software engineering. Nato Science Committee,
October 1968.

(Neighbors 1980) Neighbors, J. M. Software construction using com-
ponents. Tech Report 160. Department of Information and Computer
Sciences, University of California. Irvine, CA. 1980.

(Neighbours 1989) Neighbors, J. M. Draco: A method for engineering
reusable software systems. In Biggerstaff, T. J. and A. J. Perlis, eds.,
Software Reusability, Vol. 1: Concepts and Models.ACM Frontier Series.
Reading, AM: Addison-Wesley, 1989, Ch. 12, pp. 295–319.

Bibliography 347

(Nielsen 2005) Nielsen, Jakob. Usability of web sites for teenagers. Alert-
box. URL www.useit.com/alertbox/teenagers.html, 31 January 2005,
accessed 10 January 2010.

(NOAD 2007) New Oxford American Dictionary, 2007.
(North 2006) North, Dan. Introducing BDD. Better Software, March 2006.
(Noble and Weir 2000) Noble, James, and Charles Weir. Small memory

software: patterns for systems with limited memory. Reading, MA:
Addison-Wesley, 2000.

(Odersky et al 2008) Odersky, Martin, Lex Spoon and Bill Venners.
Programming in Scala: A comprehensive step-by-step guide. Artima,
2008, www.artima.com/shop/programming in scala, accessed 4 Oct-
ober 2008.

(Olesen 1998) Olesen, Dan R. Developing user interfaces. San Francisco:
Morgan Kaufmann, 1998.

(Parnas 1978) Parnas, David. Designing software for ease of extension and
contraction. Proceedings of the 3rd International Conference on Software
Engineering. Atlanta, GA., May 1978, pp. 264–277.

(Parr 2007) Parr, Terrence. The definitive Antlr reference: building domain-
specific languages. Pragmatic Bookshelf, 2007.

(Patton 2009) Patton, Jeff. Telling better user stories: Map-
ping the path to success. Better Software 11(7), Novem-
ber/December 2009, pp 24–29. URL www.nxtbook.com/nxtbooks/sqe/
bettersoftware 1109/index.php?startid=24, accessed 12 Novem-
ber 2009.

(Petroski 1992) Petroski, Henry. Form follows failure. Technology Maga-
zine 8(2), Fall 1992.

(Poppendieck and Poppendieck 2006) Poppendieck, Mary and Tom Pop-
pendieck. Implementing lean software development: From concept to
cash. Reading, MA: Addison-Wesley, 2006.

(Price and Demurjian 1997) Price, Margaretha W., and Steven A. Demur-
jian. Analyzing and measuring reusability in object-oriented design.
OOPSLA ’97 Proceedings, pp. 22–23.

(Qi4j 2006) Qi4j in 10 Minutes. www.Qi4j.org/163.html, accessed 2
October 2008.

(Ramnivas 2003) Laddad, Ramnivas. AspectJ in action. Manning Publica-
tions, 2003.

(Raskin 2000) Raskin, Jeff. The humane interface: New directions for
designing interactive systems. Reading, MA: Addison-Wesley, 2000.

(Reenskaug, Wold, and Lehne 1996) Reenskaug, Trygve, P. Wold and O. A.
Lehne. Working with objects: The OOram software engineering method.
Greenwich: Manning Publications, 1995.

348 Bibliography

(Reenskaug 2003) Reenskaug, Trygve. The Model-View-Controller
(MVC): Its past and present. From http://heim.ifi.uio.no/trygver/

2003/javazone-jaoo/MVC pattern.pdf, accessed 10 October 2008.
August 2003.

(Reenskaug 2007) Reenskaug, Trygve. BabyUML: A laboratory for
exploring a new discipline of programming. 2007. URL http://heim.

ifi.uio.no/∼trygver/themes/babyuml/babyuml-index.html,
accessed 14 November 2009.

(Reenskaug 2008) Reenskaug, Trygve. The common sense of object-
oriented programming. URL http://heim.ifi.uio.no/∼trygver/

2008/commonsense.pdf, September 2008, accessed 3 January 2010.
(Reeves 2005) Reeves, Jack W. What is software design – 13 years

later. In developer.* Magazine, 23 February 2005. URL www.
developerdotstar.com/mag/articles/reeves 13yearslater.html,
accessed 12 November 2009.

(Riehle and Züllighoven 1995) Riehle, Dirk, and Heinz Züllighoven. A
pattern language for tool construction, integration based on the tools,
materials metaphor. In Pattern Languages of Program Design.Edited by
James O. Coplien, Douglas C. Schmidt. Addison-Wesley, 1995. Chapter
2, pages 9–42.

(Rybczynski 1987) Rybczynski, Witold. Home: A short history of an idea.
New York: Penguin, 1987.

(Rybczynski 1989) Rybczynski, Witold. The most beautiful house in the
world. New York: Penguin, 1989.

(Schärli et al 2003) Schärli, Nathanael, Stéphane Ducasse, Oscar Nierstrasz
and Andrew Black. Traits: Composable units of behavior. Proceedings
of European Conference on Object-Oriented Programming (ECOOP’03),
LNCS, vol. 2743, Springer Verlag, July 2003, pp. 248–274.

(Schmidt et al 2000) Schmidt, Douglas, Michael Stal, Hans Rohnert, and
Frank Buschmann. Pattern-oriented software architecture volume 2:
patterns for concurrent and distributed objects. Wiley, 2000.

(Shalloway, Beaver and Trott 2009) Shalloway, Alan, Guy Beaver, and
James R. Trott. Lean-Agile software development: achieving enterprise
agility. Reading, MA: Addison-Wesley Professional, 2009.

(Shrdlu 2009) SHRDLU. Wikipedia. URL http://en.wikipedia.org/

wiki/SHRDLU, 10 June 2009, accessed 7 November 2009.
(Siniaalto and Abrahamsson 2007a) Siniaalto, Maria, and Pekka Abra-

hamsson. Comparative study on the effect of test-driven development
on program design and test coverage. ESEM 2007. First international
conference on empirical software engineering and measurement, 20-21
September 2007, pp. 275–284.

Bibliography 349

(Siniaalto and Abrahamsson 2007b) Siniaalto, Maria, and Pekka Abra-
hamsson. Does test-driven development improve the program code?
Alarming results from a comparative case study. Proceedings of Cee-Set
2007, 10–12 October 2007, Poznan, Poland.

(Smiles 1860) Smiles, Samuel. Self-help: with illustrations of character, con-
duct and perseverance. New York: Harper & Brothers, 1860. Published as
Self-Help (Peter W. Sinnema, ed.) New York: Oxford University Press,
2002.

(Snowden 2009) Snowden, Dave. Leadership, self-organization and
metaphor. Scan-Agile Conference, Helsinki, Finland, 15 October 2009.

(Snowden and Boone 2007) Snowden and Boone. A Leader’s framework
for decision making. Harvard Business Review, Nov. 2007.

(Standish Group 1995) The Standish Group report: Chaos. T23E-
T10E Standish Group Report, 1995, http://www.scs.carleton.
ca/∼beau/PM/Standish-Report.html. http://www.cs.nmt.edu/∼
cs328/reading/Standish.pdf, accessed 31 October 2009.

(Stein, Lieberman, and Ungar 1989) Stein, Lynn Andrea, Henry Lieber-
man and David Ungar. A shared view of sharing: The Treaty of
Orlando.Addendum to the OOPSLA ’87 Conference Proceedings, ACM
Press, 1989, 43–44.

(Stevens, Myers and Constantine 1974) Stevens, W. P., Myers, G. J., and
Constantine, L. L. Structured design. IBM Systems Journal 13(2), 1974,
pp. 115–139.

(Sutherland 2003) Sutherland, Jeff, SCRUM: Another way to think about
scaling a project. 11 March 2003, accessed 28 November 2007. URL
http://jeffsutherland.org/scrum/2003 03 01 archive.html.

(Sutherland 2007) Sutherland, Jeff. Origins of Scrum. July 2007, accessed
20 July 2008, http://jeffsutherland.com/scrum/2007/07/origins-
of-scrum.html.

(Sutherland 2008) Sutherland, Jeff. The First Scrum: Was it Scrum
or lean? URL http://jeffsutherland.com/scrum/2007/11/is-it-
scrum-or-lean.html, August 10, 2008, accessed 10 December, 2008.

(Sutherland 2009) Sutherland, Jeff. Enabling specifications: The key to buil-
ding Agile systems. URL http://jeffsutherland.com/scrum/2009/
11/enabling-specifications-key-to-building.html, 25 November
2009, accessed 17 December 2009.

(Swieringa and Wierdsma 1992) Swieringa, Joop, and Andre Wierdsma.
Becoming a learning Organization: Beyond the learning curve. Reading,
MA: Addison-Wesley, 1992.

(Takeuchi and Nonaka 1986) Takeuchi, Hirotaka, and Ikujiro Nonaka.
The New new product development game. Harvard Business Review,
Reprint 86116, January-February 1986.

350 Bibliography

(Tuckman 1965) Tuckman, Bruce W. Developmental sequence in small
groups, Psychological Bulletin 63. Washington, D.C.: American Psycho-
logical Association, 1965, pp. 384–399.

(Weinberg 1999) Personal interview with Jerry Weinberg, 31 May, 1999.
(Wikipedia 2009) Wikipedia. ‘‘Autopoiesis.’’ http://en.wikipedia.org/
wiki/Autopoiesis. 6 March 2009, accessed 29 March 2009.

(Weiss and Lai 1999) Weiss, David M., and Robert Chi-Tau Lai. Software
product-line engineering: A family-based software development process.
Addison-Wesley, 1999.

(Wirfs-Brock 1993) Wirfs-Brock, Rebecca. Designing scenarios. Smalltalk
Report 3(3), November/December 1993.

(Wirfs-Brock and McKean 2003) Wirfs-Brock, Rebecca, and Alan McKean.
Object design: Roles, responsibilities and collaborations. Reading, MA:
Addison-Wesley, 2003.

(Womack et al 1991) Womack, James P., Daniel T. Jones, and Daniel Roos.
The machine that changed the world: The story of lean production. New
York: Harper Perennial, 1991.

(Wu and Wen 2006) Wu, Cheng-Wen, and Xiaoquing Wen. VLSI test
principles and architectures: Design for testability. Morgan Kaufmann,
2006.

(Yourdon and Constantine 1975) Yourdon, E., and Constantine, L. L.
Structured design. Englewood Cliffs, NJ: Prentice-Hall, 1979; Yourdon
Press, 1975.

(Øredev 2008) Panel on domain-driven design. Øredev 2008, Malmø,
Sweden, 19 November 2008.

(Østergaard 2008) Østergaard, Jens. Personal E-mail exchange, 8 October,
2008.

Index

abstract base classes (ABCs) 133–7,
146, 202

abstraction 81, 108
AccountHolders 59
ACM OOPSLA conference 115
actors 171, 181, 237
ADAPTER design pattern 125
advocate 54
Agile Manifesto 4, 7, 23
Agile Systems

principles 3–4
scope of 8–9
production 7–10

Algol 233
algorithm 220, 245
algorithmic scaling 144–6
antlr 121
AOP (Aspect-Oriented

Programming) 99, 302
APIs 21, 40, 99
application generators 120–2
application-oriented language 121
architect role 42
architectural completeness 152
architectural effort 160
ARCHITECTURE ALSO IMPLEMENTS

pattern 53
architecture carryover 128–9
ARCHITECTURE CONTROLS

PRODUCT pattern 53
architecture testing 149–52

artifacts 294–7
as-builts 127
’ask five times’ exercise 64
Aspect-Oriented Programming

(AOP) 99, 302
assertions 137–44
assessment of architecture 160–2
Atomic Event architecture 157, 158,

206–8
domain objects 221
form and architecture of 220–6
object roles, interfaces and the

model 221–4
one-to many mapping of object roles

to objects 225–6
use cases, atomic event architectures

and algorithms 224–5
vs DCI 286–7

autonomy 91
of third-party software 125–6

autopoietic systems 68

BabyUML environment 268, 269, 275
BabyUML project 301
base class object 104
baseline 179
behavior 45, 245
Behavior Driven Development

(BDD) 46, 57, 175
behavior modeling 46
Bell laboratories 88

351

352 Index

Big Architecture Document 62
bison 121
blit 88
block worlds 218
Book Publication Data 128
brainstorming 176, 181
BUFD acronym 159–60
build/buy tradeoffs 74
business rules 191–3

C 114, 138
C# 118, 138, 156, 158, 251

account example 315–19
DCI in 299

C++ 95, 114, 156, 300
abstract base classes in 134, 136, 146,

158, 240, 251, 252
assertions in 138, 140–2
coding 257–9
commonalities and variations for 118,

119, 120
member function 143
object role traits 288–90
programming language

extension 148–9
traits in 254–5

caring 19–21
case methods 157
CASE tools 85, 163
case-effect charts 177
change

response to 91
in version 104

Chief Engineer 49
chip placement 93
classes 30, 117, 156, 157
classic software architecture, features

of 5–6
classification 88
client objects 126
COBOL 286
code 17–18

design and 33–4
rough framing 131–52

code base 79
code readability 245
coder label 55

cohesion 92, 102
collaborative game 177, 187
commonality categories 112–14, 245
commonsense 19–21
compression 108, 109–10, 245
Concept Maps 47
conservation 84
consistency 84
consolidation 176
Context 47, 108, 109, 157, 166, 173
Context classes 243–6
Context framework 261–83

C++ code 265–7, 269
Ruby code 263–4, 269

Context object 153, 157–8, 244–6
in user mental model 290–4

contract approach 144, 184
convergent thinking 176
Conway’s Law 49, 56, 58, 65, 85, 90–3,

95, 96, 106, 217, 236
CORBA 122, 150
cost

development 50
discovery 85
as end-user value 37, 38
schedule tradeoffs 74
software development 85

coupling 92, 102
CRC (Candidate object, Responsibilities

and Collaborators) cards 209,
229–31, 233

creeping featurism 75
Curiously Recurring Template

Idiom 288
customer engagement 15, 23, 60
customers 50–2

contrasted with end users 50–2
in the Value Stream 52

data structure 113
database transaction logs 202
Data-Context-Interactionarchitecture see

DCI architecture
dataflow diagrams (DFD) 174, 178
DAY CARE pattern 19, 110
DCI architecture 9–10, 34, 157, 158, 171,

220, 235–303

Index 353

artifacts 294–7
basic 239–40
Context classes 243–6
Context framework 261–83
context layering 283
Context Objects in 290–4
design inputs 246
documentation 300–1
Domain Logic 285–90
example 246–85
history 301–3
identifiers 250–3
information hiding 283–4
inputs to design 246–7
methodful object roles 240–2, 253–61
methodless object roles 250–3
in a nutshell 236–8
MVC and 238
overview 238–46
in Ruby 297–8
selective object role injection 284
traits 242–3
use cases 247–50
variants 283–5

decision tables 177
definition of architecture 2, 81–2
deliberation 83
derived class object 104
design by contract 138
design for testability (DFT) 57
design style 100–2

commonality and variation 104–5
commonality, variation and

scope 108–11
explicit commonalities and

variations 111–14
structuring vs partitioning 102–3
tacit commonality and

variation 105–8
design technique 101
design, code and 33–4
designer label 55
developer role 42
developers 55–6, 169–70
DEVELOPING IN PAIRS pattern 110
development costs 50

deviations 196
DFT (design for testability) 57
direct manipulation metaphor 85, 114,

207
discovery cost 85
disposable analysis 210
divergent thinking 176
DIVERSE GROUPS pattern 100
documentation 16–19, 21, 127–9, 162,

162–3, 209–11, 231–2
DCI 300–1
problem definition 76

Dolphin 218
domain class method elaboration 287
domain dictionary 128
domain expert 42
DOMAIN EXPERTISE IN ROLES

pattern 110
domain experts 52–5, 95, 117, 150
domain knowledge 95
domain logic in DCI 285–90
domain members 119
domain method 157
domain modeling 46
domain-specific language (DSL) 121,

129
state of art in 121
place in architecture 121–2

domains 94–6, 118
Dorado 218
Dove 218
doxygen 232
DynaBook 215, 217
dynamic component of architecture 82

Eiffel 144
ElectroCard 93, 94, 97, 103, 111, 114,

117, 131
embedded code 210, 216
enabling specificiation 170
end user cognitive model 44
end user expectations 43–4, 60
end user landscape 47
end user mental model 31, 32, 45, 46
end users as value stream

anchors 36–41
end users role 43–7

354 Index

envisioning 176
evolution 104
Excel 174

FACADE patterns 148
factoring 226–31, 287
FACTORY METHOD 148
failure-proof constraints see Poka-Yoke
families 96, 118, 119
FAST system 129
fault-tolerance software patterns 123
fear of failure 82
feature lists 173–4
feature testing 45
feedback 23, 49, 60, 69
focus 84
forces 122
form 10
form 30–2, 44, 45, 81

vs accessible services 146–7
foundations of 30–2

forming stage 65
FORTRAN 286
FRESH WORK BEFORE STALE

pattern 100
function, as end-user value 37
functionality 10, 165–211

genchi genbutsu 56, 60
generalization 108–9
GET ON WITH IT pattern 87
graphical interface 216
GUI 62, 93

habits 128, 182–5, 225, 277–83
HAS-A relationship 153
history 24–5

of DCI 301–3
of computer science 218–20
of use cases 211

HOLISTIC DIVERSITY 36
Honda 39

IBM 64, 163
impediment list 75
implementation procedures 122
increments 187

information nicknames 128
infrastructure organizations 110
interactive code 216
interactive code 216
invariant 104

Java 92, 114, 138, 156, 158
DCI in 299–300
documentation 300

Javadoc 232
Joint Application Design (JAD)

24–5
jUnit 86
just-in-time delivery 22, 37, 197,

288, 289

known knowns 176
known unknowns 176
Knuth’s Law 22

law of continuity 152
Laws of Demeter 92
Lean

goals 132
definition 1–2
management 1–2, 22–3
principles 2–4
feature development 4–6
overlap with Agile 11–14

Lean Secret 2, 14, 27, 38–41, 57, 61, 96,
160, 185

line management 49
Liskov Substitutability Principle

(LSP) 144
Lisp 55
locus of attention 88
lost practices 14–21
Lucid 55

main success scenario 180
maintainable code 205
maintainer label 55
managers 48–9
market objects 126
methodful object roles 240–2
methodless object role types 224, 240,

250–3

Index 355

Model-View-Controller (MVC)
architecture 16, 123, 124, 129, 153,
158, 207, 233

APIs 217
Model-View-Controller-User

(MVC-User) 116, 213, 214–20
modules 102, 106
motivation, user’s 175
Motorola 64
mouse 219
myths, Agile 86–7

narratives 174–5, 177–8
network of stakeholders 61–6
nicknames 126, 184
NIH (Not Invented Here) 124
norming stage 65
noun–verb interaction style 207

object composition 153
object orientation 115–17
object relationships 158
object roles 201, 202, 232, 237
Objective-C 251
object-oriented architecture 47, 155–8
object-oriented design techniques 46
object-oriented programming 29, 115,

206–8
OOPSLA 163
ORGANIZATION FOLLOWS

LOCATION pattern 58, 66, 96
ORGANIZATION FOLLOWS MARKET

pattern 58, 66, 97
overconstrained problems 73–4

paradigms 101
parallelism 56
parameterization 95
parameters of variation 119
Pareto’s Law 22
partitioning 88–100, 102–3

architecture and culture 100
complexity of 93–4
dimensions of complexity 94, 96–9
domain form vs behavioral

form 89–90
domains 94–6

see also Conway’s Law
PatientKeeper 19
pattern languages 122–4
performing stage 65
Personas 171–2, 174, 175, 178
phased program planning (PPP)

systems 63
pipelining 56
placement 93
PloPs (Pattern Languages of

Programs) 123
plumbing 147
poka-yoke 83–4, 133, 138, 226
polymorphism 244–5
POSA series 123
post-conditions 137–44, 187
pre-conditions 137–44, 187
problem definition 23, 29, 67–78

Agile and 68
documentation 76
good and bad 70–2
Lean and 68–9
problems and solutions 72–3
problem ownership 74

Product Backlog 40
Product Backlog Items (PBIs) 75
product line 95
Product Manager 35, 49
Product Owner 40, 48, 49, 75
programming by difference 104
Project Manager 35
prototypes 46, 59, 60, 176
PROXY design pattern 125
'pull' 83
'push' 83
Python

account example 311–13
DCI in 299

Qi4j 268, 299, 327–9

readable code 205
RECOMMITMENT MEETING

pattern 75
re-factoring 86, 87, 226–31, 287
relationships

kinds 153–5

356 Index

relationships (continued)

testing 155
RESPONSIBILITIES ENGAGE

pattern 58
return on investment (ROI) 37, 47, 54
reverse engineering 18
role methods 11
roles 156, 157, 221
route 132
routing 93
RPG 286
Ruby 133, 251, 284

account example 321–6
coding 259–61
traits in 254–5

RUP (Rational Unified Process) 57, 211

scaffolding 147–9
Scala 148, 284, 285

DCI and 298, 307–10
methods 113

scenarios 174, 175
scope 48, 186

trimming 185
Scrum 12, 13, 15, 21, 23, 40, 51, 59, 63,

178, 179, 232
Problem Ownership 75

ScrumMaster 36, 48–9
selections 221
self 226
self-organization 23, 48, 68
Service-Oriented Architecture (SOA) 21
SHRDLU 218
Simula 29
Simula 67 programming 115, 233
Smalltalk 114, 115, 156, 163, 207, 251,

275, 300
documentation 300
traits in 253–4

sneak paths 155
solution domain experts 54–5
sort function 102
space/time tradeoffs 74
SQL 125, 126
Squeak, account example in 331–9
stakeholder analysis 178

stakeholder engagement 15–16, 27–9,
35–66

process elements 57–61
stakeholder relationships 62
stakeholders, key 41–57
state machines 177
STATE patterns 148
static cling 142–4
static component of architecture 82
statistical process control (SPC) 24
storming stage 65
Storyboards 176, 178
stovepipe versus swarm 61–4
structure 10, 196
structure-preserving transformation 123
structuring 91, 102–3
subject matter experts 95
subsystems 90, 102
suitability of third-party software 126–7
Sunny Day scenario 187–93

decision-making 204
emerging requirements 204
input to architecture 205
release planning 204–5
testing 203–4
understanding of what to

develop 205–6
user’s workflow 203

SURROGATE CUSTOMER pattern 172

tacit knowledge 65
TAKE NO SMALL SLIPS pattern 75
teamwork 65
TEMPLATE METHOD pattern 95
Test-Driven Development (TDD) 86–7
testers 55–7
Theory X management 301
Theory Y management 301
thinking 19–21
third-party software 124–7
time, as end-user value 37, 38
tools 229–31
top-down design 88
Total Productive Maintenance (TPM) 24
Toyota Production System (TPS) 24, 25
Toyota Way 1, 4, 12, 24, 41
traits 11

Index 357

approach 242–3
as building blocks 253
in C++ 254–5
in Ruby 256–7
in Smalltalk 253–4

trust 64

UML 21, 89, 211
uniformity of third-party software

125
UNIX systems 101, 138
unknown unknowns 9
usability

foundations for 16
testing 149, 208–9

usage narratives 174
use cases 167–9, 178, 181, 188,

200–5
conversation in 188
as decision framework 177
essential 188
roles from 201–2
structured 188

user expectations 8, 81

user mental model, context objects
in 290–4

User Narratives 11
User Profiles 171, 172, 178
user roles 171–2, 173, 221–2
user stories 36, 166–7, 170–1, 179
user workflow 178

validation 45
value stream 35–41

architecture in 37–8
end users as anchors 36–7

variation 104
volitive world model 241
Von Neumann programming 89, 113,

117–20, 221

'why'of software 19
'wicked problems' 72

XML 126
XP 13, 15, 21, 31, 49, 211

yacc 121, 122
YAGNI acronym 159–60

